SDT-base         Contents     Functions     Indexzzzz

Contents

Chapter 1  Modeling viscoelastic materials

Chapter 2  Viscoelastic FEM models

Chapter 3  Composite FEM modeling

Chapter 4  Toolbox tutorial

Chapter 5  Toolbox Reference

References

[sal2]
J. Salençon, Viscoélasticité. Presse des Ponts et Chaussés, Paris, 1983.
[nas7]
A. Nashif, D. Jones, and J. Henderson, Vibration Damping. John Wiley and Sons, 1985.
[ber7]
C. Bert, "Material damping: An introductory review of mathematical models, measures, and experimental techniques," Journal of Sound and Vibration, vol. 29, no. 2, pp. 129-153, 1973.
[gol1]
G. Golub and C. Van Loan, Matrix computations. Johns Hopkins University Press, 1983.
[mct1]
D. McTavish and P. Hugues, "Finite element modeling of linear viscoelastic structures," ASME Biennal Conference on Mechanical Vibration and Noise, sep 1987.
[les3]
G. Lesieutre and E. Bianchini, "Time domain modeling of linear viscoelasticity using augmenting thermodynamic fields," SDM Conference, AIAA paper 93-1550-CP, pp. 2101-2109, 1993.
[les4]
E. Bianchini and G. Lesieutre, "Viscoelastic constrained-layer damping - time domain finite element modeling and experimental results," SDM Conference, AIAA paper 94-1652-CP, pp. 2666-2676, 1994.
[les5]
G. Lesieutre and E. Bianchini, "Time domain modeling of linear viscoelasticity using augmenting thermodynamic fields," J. Vibration and Acoustics, vol. 117, pp. 424-430, 1995.
[daz1]
J. D'Azzo and C. Houpis, Linear Control System Analysis and Design. MacGraw Hill Book Company, 1988.
[ren2]
F. Renaud, J. L. Dion, G. Chevallier, I. Tawfiq, and R. Lemaire, "A new identification method of viscoelastic behavior: Application to the generalized maxwell model," Mechanical Systems and Signal Processing, vol. 25, no. 3, pp. 991-1010, 2011.
[sch4]
F. Schwartzl Physica, pp. 830-923, 1951.
[lio1]
A. Lion, "On the thermodynamics of fractional damping elements," Continuum Mech. Thermodyn., vol. 9, pp. 83-96, 1997.
[fer2]
J. Ferry, Viscoelastic Properties of Polymers. Wiley, 2nd ed., 1970.
[wil4]
Zilson, D. Kiureghian, and Bayo, "A replacement of the srss method in seismic analysis," Earthquake Engineering and Structural Dynamics, vol. 9, pp. 187-194, 1981.
[ker8]
G. Kergourlay, Mesure et prédiction de structures viscoélastiques - Application à une enceinte acoustique. PhD thesis, Ecole Centrale de Paris, 2004.
[ast1]
American Society for Testing and Materials, E756-98 Standard Test Method for Measuring Vibration-Damping Properties of Materials, 1998.
[obe1]
H. Oberst and K. Frankenfeld, "Über die dämpfung der biegeschwingungen dünner bleche durch festhaftende beläge," Acustica, vol. 2, pp. 181-194, 1952.
[ros1]
D. Ross, E. Ungar, and E. Kerwin, "Damping of plate flexural vibrations by means of viscoelastic laminates," ASME, vol. 51, 1959.
[bal42]
E. Balmes, Methods for vibration design and validation. Course notes ENSAM/Ecole Centrale Paris, 1997-2012.
[cau1]
T. Caughey, "Classical normal modes in damped linear dynamic systems," ASME J. of Applied Mechanics, pp. 269-271, 1960.
[ray1]
J. Rayleigh, The Theory of Sound. Dover Publications, New-York, NY, 1945 (reedition).
[bal25]
E. Balmes, Modèles analytiques réduits et modèles expérimentaux complets en dynamique des structures. Mémoire d'habilitation à diriger des recherches soutenue à l'Université Pierre et Marie Curie, 1997.
[gib1]
R.-J. Gibert, Vibrations des Structures. Editions Eyrolles, Paris, 1988.
[bal10]
E. Balmes, "New results on the identification of normal modes from experimental complex modes," Mechanical Systems and Signal Processing, vol. 11, no. 2, pp. 229-243, 1997.
[rog1]
L. Rogers, C. Johnson, and D. Kienholz, "The modal strain energy finite element method and its application to damped laminated beams," Shock and Vibration Bulletin, vol. 51, 1981.
[inm1]
D. Inman, Engineering Vibration. Prentice-Hall, Englewood Cliffs, N.J., 1994.
[hey1]
W. Heylen, S. Lammens, and P. Sas, Modal Analysis Theory and Testing. KUL Press, Leuven, Belgium, 1997.
[ewi1]
D. Ewins, Modal Testing: Theory and Practice. John Wiley and Sons, Inc., New York, NY, 1984.
[rcc1]
EDF, RCC-G : Règles de conception et de construction des îlots nucléaires REP. EDF - Direction de l'Equipement Edition, Juillet 1988.
[kom1]
L. Komzsik, "Implicit computational solutions of generalized quadratic eigenvalue problems," Finite Elements In Analysis and Design, vol. 37, pp. 799-810, 2001.
[les2]
G. Lesieutre and E. Bianchini, "Time domain modeling of linear viscoelasticity using augmenting thermodynamic fields," SDM Conference, AIAA paper 93-1550-CP, pp. 2101-2109, 1993.
[gol2]
D. Golla and P. Hughes, "Dynamics of viscoelastic structures - a time domain finite element formulation," Journal of Applied Mechanics, vol. 52, pp. 897-906, 1985.
[aba1]
ABAQUS/Standard, User's Manual, vol. 1. Hibbit, Karlsson, Sorhensen, Inc.
[bag1]
L. Bagley and P. Torvik, "Fractional calculus - a different approach to the analysis of viscoelastically damped structures," AIAA Journal, vol. 21, no. 5, pp. 741-748, 1983.
[bal47]
E. Balmes, "Modes and regular shapes. how to extend component mode synthesis theory.," Proceedings of the XI DINAME - Ouro Preto - MG - Brazil, March 2005.
[rub1]
S. Rubin, "Improved component-mode representation for structural dynamic analysis," AIAA Journal, vol. 13, no. 8, pp. 995-1006, 1975.
[mac2]
R. MacNeal, "A hybrid method of component mode synthesis," Computers and structures, vol. 1, no. 4, pp. 581-601, 1971.
[guy1]
R. Guyan, "Reduction of mass and stiffness matrices," AIAA Journal, vol. 3, p. 380, 1965.
[cra4]
R. J. Craig and M. Bampton, "Coupling of substructures for dynamic analyses," AIAA Journal, vol. 6, no. 7, pp. 1313-1319, 1968.
[plo2]
A. Plouin and E. Balmes, "A test validated model of plates with constrained viscoelastic materials," International Modal Analysis Conference, pp. 194-200, 1999.
[gro3]
B. Groult, Extension d'une méthode de modification structurale pour la conception de dispositifs dissipatifs intégrant des matériaux viscoélastiques. PhD thesis, École Centrale Paris 2008-14, 2008.
[bal26]
E. Balmes, "Model reduction for systems with frequency dependent damping properties," International Modal Analysis Conference, pp. 223-229, 1997.
[kan2]
T. Kant and S. K., "Free vibration of isotropic, orthotropic and multilayer plates based on higher order refined theories," Journal of Sound and Vibration, vol. 241, no. 2, pp. 319-327, 2001.
[bal37]
E. Balmes and A. Bobillot, "Analysis and design tools for structures damped by viscoelastic materials," International Modal Analysis Conference, February 2002.
[mea3]
D. Mead and S. Markus, "The forced vibration of a three layer, damped sandwich beam with arbitrary boundary conditions," Journal of Sound and Vibration, vol. 10, no. 2, pp. 163-175, 1969.
[bal18]
E. Balmes, "Parametric families of reduced finite element models. theory and applications," Mechanical Systems and Signal Processing, vol. 10, no. 4, pp. 381-394, 1996.
[mor4]
H. J.-P. Morand and R. Ohayon, Fluid Structure Interaction. J. Wiley & Sons 1995, Masson, 1992.
[ker1]
G. Kergourlay, E. Balmes, and D. Clouteau, "Interface model reduction for efficient fem/bem coupling," International Seminar on Modal Analysis, Leuven, pp. 1167-1174, September 2000.

Index

  • design parameters, 4.4.1

  • FEMLink, 5
  • family of models, 4.4.1
  • fe2xf, 5
  • fevisco, 5

  • hysteretic, 1.2.2

  • MifDes, 5
  • m_visco, 5


©1991-2024 by SDTools
This document was translated from LATEX by HEVEA.