SDT-visc
Contents  
Functions  
 ![]() ![]() |
You can introduce your own nomograms in the m_visco database. By simply defining an mvisco_*.m file (mvisco_3m.m serves as a prototype. The data structure defines a reference elastic material in mat.pl, complex modulus and shift factor tables, an finally additional properties stored in mat.nomo (which will be better documented later).
mat.pl=[1 fe_mat('m_elastic','SI',1) 1e6*2*1.49 .49 1500 1e6]; mat.name='ISD112 (1993)'; mat.type='m_visco'; mat.unit='SI'; mat.T0=[0]; mat.G=[ % Freq, Re(G) Im(G) 1 1.72688e+004 3.51806e+003 10 2.33865e+004 5.35067e+003 100 3.49390e+004 8.25596e+003 1000 5.76323e+004 1.67974e+004 10000 1.03151e+005 5.72383e+004 1e+005 2.10295e+005 1.79910e+005 1e+006 6.59947e+005 6.57567e+005 1e+007 2.06023e+006 1.95406e+006 1e+008 5.83327e+006 3.57017e+006 1e+009 1.48629e+007 5.60247e+006 1e+010 3.25633e+007 7.33290e+006 1e+011 6.16925e+007 5.40189e+006 1e+012 1.01069e+008 2.48077e+006 ]; mat.at=[ % T, at -10 1.32885e+007 0 9.16273e+005 10 1.14678e+005 20 2.45660e+004 30 9.00720e+003 40 2.99114e+003 50 1.27940e+003 60 7.10070e+002 70 2.88513e+002 80 1.96644e+002 90 1.37261e+002 100 1.03674e+002 110 6.84906e+001 120 4.66815e+001 ]; mat.nomo={'w',[-1 0 12],'Eeta',[4 9 2],'unit','SI', ... 'www','www.3m.com', ... 'file','ISD_112_93.png','Rect',[145 35 538 419], ... 'type','G'};
cf=feplot; m_visco('database',cf); % select all materials m_visco('info',cf); m_visco('deffreq',cf) % set frequencies vector for all the material m_visco('defT',cf) % set temperature vector for all the material cf.Stack{'info','Freq'}=logspace(3,log10(15e3),300); % range of interest cf.Stack{'info','Range'}=20; % Temperature of interest m_visco('nomo',cf) % list with all nomograms Freq=stack_get(cf.mdl,'info','Freq','getdata'); T=stack_get(cf.mdl,'info','Range','getdata'); Mat=stack_get(cf.mdl,'mat'); m_visco('nomo',cf)
General anisotropic elastic materials are described by a constitutive law of the form
(4.1) |
where for orthotropic material the expression of [Λ] is given by:
(4.2) |
with Δ= 1−νxyνyx−νyzνzy−νzxνxz−2νyxνzyνxz/ExEyEz. The expression of the flexibility allows easier identification of terms:
(4.3) |
If one has no particular interest in the engineering constants, the orthotropic constitutive law (??) can also be written:
(4.4) |
In the fevisco MatSplit command. ortho allows the decomposition in the 9 non-zero terms shown above, while EG groups C44,C55,C66 as G and other terms as E.