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Abstract
Rubber mount modeling is crucial for correct multibody simulation, but the cost of 3D large deformation
finite element computation is orders of magnitude higher than needed for reasonable multibody computation
times. As a result, mount characterization is purely experimental and does not allow design studies on shape,
material properties or complex loading, that would be a much needed improvement over current practice. The
paper first discusses material laws suited for rubber behavior in large deformations, then kinematic reduction
combined with fast evaluation of generalized loads using hyper-reduction is introduced as a methodology to
obtain acceptable computation times. An industrially representative model is then used to demonstrate the
validity of the procedure and gain insight on how it can be used in practice.

1 Introduction

Rubber mounts are widely used in automotive industry due to their capacity to undergo large deformations
with low deterioration, to their relatively low stiffness and high dissipative properties. These features make
the material appropriate to connect vibrating parts to the chassis, such as powertrain and suspension. Artic-
ulation models are mostly used in large multibody systems, where several bodies are connected by different
kinds of joints.

Even if joints are not the main object of study for a multibody system, innacurate models may lead to
incorrect system behavior [1]. For practical use, joints must not be a time consuming component, so they
are usually modeled with a single integration point model with separate dissipation and conservative parts.
While these models may reproduce test campaigns with a fair precision and high performance, there is no
possibility of effective identification, shown as the top blue arrow of figure 1, without extensive testing.
Testing all the possible load cases in a joint to compile a fully representative model is thus a very expensive
process.

The alternative strategy is to consider identification of material properties shown as red arrow in figure 1.
Section 2 will however illustrate that elastomer behavior and modeling is still a very open problem. Beyond
the complexity of material laws, a passive control of stiffness and dissipation over the operating range often
demands the articulations to have complex geometries. An accurate description of these phenomena requires
a nonlinear finite element with a high degree of detail on the geometry and therefore a great number of
degrees of freedom, leading to simulation times in hours, when seconds are necessary for practical multibody
simulation. Thus currently the only possibility to exploit material behavior is to identify meta-models based
on numerical experiments similar to those of test campaigns.
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Tests

Fx = f(x, ẋ)
• Imposed displace-
ments
• Force as response
• Dependency on ma-
terial and geometry

3D models

σ = f(ε, ε̇, εi)
• Nonlinear models
• Finite element struc-
ture
• Implicit and explicit
time solvers

Meta-models
F = f(x, ẋ, xi)
• Parameter fitting
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lization
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linearities

Multibody simulations

Final utilizations:
• Powertrain sus-
pension
• Wheel suspension
• Comfort and en-
durance analysis

Identification

Material identification Direct implementationHyper-Reduction Identification

Implementation

Hyper-reduction

Figure 1: Current (blue) and proposed (green and/or red) procedures for emulating elastic articulations in
MBS.

This work thus aims to apply a hyper-reduction technique to a non linear highly detailed model finite element
model, and analyze its viability for use in multibody simulations, either directly for the system simulation
(bottom red arrow in figure 1) or indirectly to speedup numerical experiments to be used in meta-model
identification (green arrow). Issues are thus strategy to achieve a compromise between performance and
accuracy by the use of a low order model and analysis of the ability to reuse reduced models in extrapolated
conditions not considered in the model building phase. Section 3.1 describes the implementation, in the
MATLAB-based Structural Dynamics Toolbox [2], of large transform non-linear material computations,
used in the learning phase of the model reduction technique. Section 4 then analyzes the implementation and
assesses performance of the method for a realistic test case.

2 Material modeling

Material modeling corresponds to the definition of a constitutive law that determines stresses as a function
of a deformation state and its history or internal states. Models that fully capture rubber behavior have been
extensively studied [3, 4, 5, 6, 7]. But this work will focus on the ability to use such models in practical MBS
applications and thus retain a somewhat simple model capturing the base requirements, large deformations,
hyperelasticity and viscoelasticity.

2.1 Hyper-elasticity

Given a volume Ω, each material point in the volume may be defined by its resting position noted by a vector
x0. The current position of this point is noted by x, hence its current displacement may be defined defined by
u = x− x0. From the displacement, it is possible to define the deformation gradient tensor as F = 1+∇u.

Quadratic forms of the deformation tensors such as the right Cauchy-Green deformation tensor C = F TF ,
or the left Cauchy-Green deformation tensor B = FF T are independent from any rotations on the material
point and are either related to the base configuration (lagrangean quantities) or to the current configuration
(eulerian quantities). Each consistent deformation measure has its energy conjugate stress, and in this work
the ones to be used are the pair first Piola-Kirchhoff stress P , and deformation gradient F , which are native
to SDT. For the development of a the material behavior, the pair second Piola Kirchhoff stress S with the
right Cauchy-Green deformation tensor C will also be used. These stresses are related by the expression
P = FS.
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When leaving the small strain domain, linear elasticity is not suited for most materials [8]. To achieve a
reasonable description of conservative forces generated by the material, the most common method is to use
an energy functional of strain tensors. Different potentials are analyzed by [9] and here, for simplicity, one
chooses a Mooney-Rivlin formulation given by

ψ = c1I1 + c2I2 +
κ

2

(
I2

3 + ln(I3)
)
, (1)

where

I1 = detF
−2/3trace(C), I2 =

detF−2/3

2

(
trace2(C)− trace(C2)

)
, I3 = det(F ) (2)

are the reduced invariants of the right Caughy-Green strain tensors, which are deviatoric quantities. Thus, a
complete decoupling between deviatoric and compression behaviors is observed on this hyper-elastic model.
This separation will be verified for the rest of the model components, and it avoids numerical issues linked
to the different magnitudes of forces of these two different natures. Deriving the functional with respect to
deformation, stress is obtained

SHE = 2
∂ψ

∂C
= (c1)1 + c2

1

2
(I11− C) + κ

(
I3 +

1

I3

)
. (3)

Numerical stability for this type of model may be assured by the polyconvexity of the potential function ψ
[10], which is the case for the chosen model only up to moderate deformations.

2.2 Viscoelasticity in large strains

Figure 2: Rheologic scheme for Maxwell cell model.

Viscoelasticity expresses a behavior dependency on deformation rate, and consequently on loading fre-
quency. For an uniaxial Maxwell material with a number N of viscoelastic cells, as figure 2 shows, the
behavior follows the equation 




σ = E∞ε+
∑N

i σ
i

σ̇i +
Ei

ci
σi = Eiε̇

(4)

where Ei are elastic moduli, and ci are viscous coefficient for each branch, εi the uniaxial deformations and
σi the uniaxial stress for each branch. For this case, response is usually seen in form of complex modulus in
frequency domain, as a transfer function

E(ω) = E∞ +

N∑

i

Ei

(
ω2τ i

2

1 + ω2τ i2
+ i

ωτ i

1 + ω2τ i2

)
(5)

where τ i are the time constants ci/Ei. Tuning for this function can be done by pole-zero allocation [11].
Although, present implementation requires stress time response, which may be written in form of a Prony
series,

σ(t) = E∞
(
ε+

N∑

i

∫ 0

−∞
αi(t− s)ε̇ds

)
,with αi(t) =

Ei

E0

(
1− et/τi

)
. (6)

This formulation may be expanded to a 3D model by the use of an energy potential instead of a modulus as
the base of relaxation, based on [12], and instead of using an elastic modulus, stresses are to be used directly,
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to avoid the necessity to compute a tangent stiffness matrix,




S =
∂ψ

∂C
+H i

Ḣ i +
1

τ i
H i =

gi

τ i
∂ψ

∂C

(7)

where H i are viscous stresses in second Piola Kirchhoff form and gi are relaxation fractions of the full
potential ψ. As for the unidimensional case, the solution of the differential equation can be written in terms
of Prony series

S(t) = g0 ∂ψ

∂C
+

∫ t

−∞
αi(t− x)

∂ψ

∂C
(x)dx,with αi(t) = gi

(
1− et/τi

)
(8)

2.3 Implementation

The implementation of the constitutive law is always the part taking most development time, while being
critical for performance. The strategy retained here is to optimize a MATLAB implementation and then use
automated C++ translation for the actual use. The SDT explicit solver provides deformation gradient, its
derivative and internal states. Invariants and deviatoric hyperelastic stress for each cell are computed from
equations (2) and (3). To solve the differential equations associated with viscous stress, convolution (8) is
not practical in terms of memory so that an explicit integration scheme leading to a recursion equation using
internal states is introduced

H i
n = e−dt/τ1H i

n−1 + e−dt/2τ1
(
SHEn − SHEn−1

)
, (9)

For compressive forces, instantaneous pressure is computed by

p =
κ

2

(
I3n −

1

I3n

)
. (10)

Elastomer materials are very incompressible, and such type of model may generate high frequency oscillation
waves, that may destabilize the numerical scheme [13]. For this reason, bulk viscosity was introduced as a
mean to dissipate these waves. It relies also on a explicit scheme and leads to the recursion equation

pv = e−dt/τ
p
(I3n − I3n−1). (11)

Figure 3 summarizes the various steps of constitutive law implementation.

3 Structural models

A material model by its own is not capable of representing a few important aspects of elastic articulations,
such as the stress concentration on certain regions or the stiffening by geometry. To represent these effects
accurately, the articulation must be considered as a complex deformable structure apart with multiple degrees
of freedom, described by the appropriate material behavior.

3.1 Finite element formulation

The Finite Element method is a well established structural analysis tool. Classically the volume Ω is divided
in simple geometric volumes, and any continuous quantity on these elements is interpolated by piecewise
polynomial shape functions. Considering kinematic description, the shape functions Ni describe displace-
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Material function
[F ]n, ˙[F ]n,

[
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]
n−1
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[
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]
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[Cn] = [F ]Tn [F ]n, [d]n =
1

2
[F ]−Tn
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−2/3
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I
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3n

2
(trace2([C]n)+trace([C]2n)) Invariants[

SHE
]
n

=dev((c1) [1] + c2 (I1n [1]− [C]n)) Deviatoric hyperelastic stress
Loop over cells i Loop on viscous cells

[H]in =dev
(
e−dt/τi [H]in−1 + e−dt/2τi

([
SHE

]
n
−
[
SHE

]
n−1

))
Viscous stress
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pn =
κ

2

(
I3n −

1

I3n

)
Pressure

pvn = e−dt/τp(I3n − I3n−1) Bulk viscosity
Output

[P ]n = [F ]n

(
I3n(pn + pvn) [1] +

∑N
i=1 g

i [H]i
)

Output stress

Uint =





I3n[
SHE

]
n

[H]in



 Internal state propagation

Figure 3: Pseudo algorithm for constitutive law integration.

ment, one can write for the body

{u(x, t)} =
∑

i∈Ω

[Ni] {q(t)} , and [F (x, t)] =
∑

i∈Ω

[
Ni,x,y,z

]
{q(t)} , (12)

where N,x,y,z represent the derivative of shape functions that depend on space, q the Degrees Of Freedom
(DOF) which depend on time. To standardize the expressions (12) with the input/output formalism used in
SDT, it is chosen here to say that displacement gradient can be observed at any point g using a linear function
of DOF associated with the observation matrix C, so that

{F (xg, t)} = [C(xg)] {q(t)} (13)

The continuously distributed quantities dual to the displacement gradient are called stresses in mechanics
and are obtained from the constitutive modeling discussed in section 2. The principle of virtual work, that
ensures energy conservation, is written

∫

Ω
ρüdV +

∫

Ω
P : dF =

∫

Ω
fdu (14)

The first integral on the left hand side corresponds to the work of inertia forces, , with ρ the density function
for the material, and may be computed by a volume integral approximated by a rule at node to obtain a
diagonal mass matrix for explicit time integration. The right hand side term correspond to work made by
external forces, which are known a priori here. The remaining term corresponds to work of internal forces,
and depends on stress integration over the elements, which may be done by a Gauss quadrature, that may as
well be seen as a result of an observation on stresses weighted by the jacobian J of transformation and the
quadrature weights wg,

Fint =

∫

Ω
P : dV ≈

∑

g

CTJgwgPg = [B] {Pg} , (15)

where B corresponds to the command matrix associated with stresses. Reciprocity is ensured by the fact that
its columns are related to the observation matrix rows by weights Jgwg at each Gauss point.
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The differential equation in time may solved by any integration scheme. Figure 4 shows the explicit New-
mark scheme used here [14].

Start step
tn = tn−1 + dt, n = n+ 1 Time step and increment
qn = qn−1+dtqn−1/2 Compute displacements
r = −Fext Initialize residual

Compute residual for each Gauss point g // Loop for each Gauss points
F gn = Cqn, Ḟ gn = Cq̇n Compute strains and get internal states

[P gn ,U
g
n] = fmaterial

(
F gn , Ḟ

g
n ,U

g
n−1

)
Compute stresses and evolve internal states

r = r + BP gn Compute residuals on DOF
DOF evolution

q̈n = −M−1r Compute accelerations
q̇n = q̇n−1 + dt

2 q̈n + dt
2 q̈n−1 Compute velocities

q̇n+1/2 = q̇n + dt
2 q̈n Estimate speed

Store strategy Store output and
If mod (n, Store) = 0 Subsampling condition

qout = [qout, qn], Pout = [Pout, Pn] Store sampled steps
Un ← Un−1 Overwrite internal states

Figure 4: Explicit Newmark scheme

3.2 Kinematic reduction

Kinematic reduction, or classical Ritz analysis, consists on restraining the displacements into a subspace
of a considerably smaller rank. This is called model reduction in the modal analysis community, but the
term kinematic reduction is preferred here since hyper reduction will be introduced as a second ingredient
for the reduced models eventually used. In a control community, one would say state reduction. One thus
assumes to have a process to build a base T that spans a subspace containing a close approximation of the
true solution. In other words

{q(t)} = [T ] {qR(t)} , (16)

were qR are the reduced degrees of freedom. This matrix must have as many lines as the displacement vector
q, but the number of columns is an open choice, which will depend on how the base is built. Early methods
from the vibration community build bases by combining modes and static correction terms [15], which are
related to the singular value decomposition [16] were reduced model building is formulated as a subspace
classification problem. Subspace classification has been considered in many applications and fields [17, 18,
19] with keywords such as Singular Value Decomposition, KLD (Karhunen-Loève Decomposition), PCA
(Principal Component Analysis), PGD (Proper Generalized Decomposition).

Since, large strain and non-linear material behavior is considered, modes are not directly pertinent and a
snapshot building strategy, discussed for example in POD algorithms [17], is considered here. A set of
vectors is generated by a high cost (also called off-line) full 3D computation. Snapshots at a regularly spaced
timesteps form a matrix qlearn. A singular value decomposition of this matrix (possibly weighted with the
mass and stiffness matrices [16]) leads to

[qlearn] =
∑

i

{Ui} (σi [vi(t)]) (17)

with Ui the orthonormal left singular vectors giving shapes in space, σi the singular values and vi the right
singular vectors giving amplitude dependence as function of time. The reduction is obtained by taking
a few of the left singular vectors to form the columns of basis matrix T . The accuracy of the subspace
representation is given by the amplitude of the first truncated singular value.
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To preserve energy, kinematic reduction is also applied to the test functions used for the virtual work
principle. In other words, the observation (13) and command (15) equations, keep the same form with
[CR] = [C] [T ] and [BR] = [T ]T [B]. As the result the implementation of time integration schemes is un-
changed. Although there is notable decrease of physical memory requirements, the most time consuming
steps related to material law computation remain and kinematic reduction is thus not relevant when a high
number of Gauss points is used.

3.3 Hyper-reduction : approximate power integrals

Hyper reduction is a technique that allows, while keeping controlled accuracy, the evaluation of the material
law at a small subset of the full model Gauss point set. Recently several different techniques were developed
are discussed in [20]. The one used in present work was developed by [21] is known as Energy Conserv-
ing Sampling and Weighting (ECSW). The principle is, after a learning phase and kinematic reduction, to
perform a reduced integration over the volume, while keeping the same forces generated by each reduced
degrees of freedom. The internal forces at all learning time steps can be computed by

[
Flint

]
NR×NT

=

NG∑

g=1

[
[CT ]T Jg

]
NR×9

wg [Pg(t)]9×NT (18)

where internal forces clearly appear to be a linear combination of weights wg, so that one can rewrite the
equation as

Flint = [G(Pg(t))] {wg} =
[
[CT ]T JgPg(t)

]
(NR×NT )×NG

{wg}NG×1 (19)

The matrix G of unassembled forces has a length of the number of the retained vectors for the base times
the number of snapshots for the learning phase. The hyper-reduction consists in computing this force con-
tribution for the whole kinematic reduction base and for all learning phase snapshots, and finding a different
vector of weights w∗g which is sparse and keeps the contributions well represented. In other words,

Find w∗g that minimizes
∥∥w∗g

∥∥
0
, subject to

∥∥∥
[
Flint

]
− [G]

{
w∗g
}∥∥∥

2
< εtol and w∗g > 0. (20)

Since the optimized result is sparse, one can say that it is a set E of N∗g hyper Gauss points and associated
weights w∗g leading to an unchanged form of (15) where the set of Gauss points is much smaller and the
weights are redefined and incorporate the jacobian

Fint(t) ≈
∑

g∗∈E

[
CT Tw∗g

]
{Pg∗(t)} =

[
BER
]
{Pg∗(t)} . (21)

Although, a minimization with a zero-norm is a problem with NP complexity, a sub-optimal approach, called
Sparse Non Negative Least SQuare method (SNNLSQ), consists in finding the point that contributes the most
to respect the constraints, and then perform a regular LSQ with this point and all previously added, until the
constraints are satisfied. A summary of the implementation is shown in figure 5.

In the end, the only update made to the model is to make the observation matrix based only on the subset of
hyper Gauss points C(E), while command must have its weights updated.

4 Sample application

While the kinematic reduction/hyper-reduction methodology is now well established, it is not widely im-
plemented and significant efforts should be placed into devising strategies to optimize its use in various
applications. The objective of this section is thus to illustrate how the accuracy of the reduced model can be
controlled and how its domain of validity can be evaluated.
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Learning simulation
B, C, wg, P lg, T , G Assembly, learning, kinematic reduction{
Flint

}
= [G] {wg} Get internal forces for training conditions

Initialize E = ∅, w∗g = {0} Initialize set of active points and weights
Initialize εtol,r = 1 Initialize hyper-reduced command and tolerance

SNNLSQ

While r =

∥∥∥∥∥
Flint −G

{
w∗g
}

Flint

∥∥∥∥∥ > εtol Optimization loop

r0 = Flint − [G]
{
w∗g
}

Get difference from full internal load learning points
µ = [G]T r0 Compute points contributions for current residue
Find index jµ of max(µ) Get point with most contribution
E = E ∪ jµ Add Gauss point to active points set

η = minw∗
g

(∥∥Flint − [G]w∗g
∥∥

2

)
Least square method to find optimal weights

Find index jneg of η < 0 Find computed negative weights
E = E\jneg Remove negative weights from active set
w∗g(Ē) = 0 and w∗g(E) = η Assign weights to active elements

BER = T TB(E)w∗g , CER = C(E)T Update observation and command

Figure 5: Implemented hyper reduction scheme

4.1 Full model results

The full model is based on a rear suspension twist beam axle articulation shown in figure 6. It has 77mm of
outer diameter and 45.5mm of inner diameter. It is composed by two different elastomer materials surrounded
by metal plates. Metal parts are considered rigid and the elastomer volume is modeled by the constitutive
law presented in section 2 and constants given in table 1. To reduce the learning phase computational cost,
the model is cut in four using its symmetry planes. The retained model uses 24530 hexahedron elements
with eight integration points each and a total of 76084 DOF. The exterior shell is fixed and a force is applied
to the inner shell as shown in figure 6.

Figure 6: Elastic articulation and finite element model used.

For explicit schemes, the maximum time step is determined from material behavior using [22]

dtmax = Lmin

√
ρ

µ̂+ λ̂
, (22)

whereLmin is the length of the smallest element, ρ the material mass density, µ̂ and λ̂ are the linearized Lamé
parameters for the material. Since viscous effects only soften the material model described in section 2, it is
safe to assume that the coefficients for the hyperelastic stress would enable the computation of the maximum
stable time-step.
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Table 1: Material constants used in simulation.

c1 c2 κ κv g τ ρ

1MPa 2MPa 20MPa 0.2MPa 1/3,1/3 1/12s,1/50s 2.33 ton/m3

The learning phase consists in the simulation of 3 cycles at 20Hz. The computation took 27.7 hours in a Core
i5-6300HQ CPU at 2.3GHz. Timestep used is 30% superior to the one computed by (22). The constitutive
law was called 49.06 × 109, times, for 250 × 103 timesteps. The most deformed element peaks at 37%
deformation. Snapshot sampling is made to get 30 sample points per cycle for the hyper-reduction step.

4.2 Performance Assessment

The SVD from the learning phase results takes only a few seconds as less than a hundred snapshots are
used. For kinematic reduction, 6 shapes are retained, defined by a threshold of 1% from the most significant
singular value. First five shapes are shown in figure 7 along with the decrease of singular values. The least
important singular shapes show already localized deformations, which means that retained shapes should be
enough to capture global deformations in the model.
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Singular values

10-2

100
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 to

 
1

Figure 7: First 5 vectors from the reduced model base and singular values amplitudes

For the hyper-reduction, a few minutes are needed to converge with the chosen kinematic base and a tolerance
of 10−4 on full internal work contributions. The final model retains 139 Gauss points out of 196240, meaning
a 3 orders of magnitude reduction, which can be directly translated to CPU time as illustrated in table 2.

Table 2: Model characteristics. CPU time is for 3 cycle transient.

Number of DOF Number of Gauss points CPU time
Full model 76084 196240 27.7h

Hyper reduced with 3 cycles 6 (10−2 on tolerance) 139 (10−4 on tolerance) 29s
Hyper reduced with half cycle 4 (10−2 on tolerance) 48 (10−4 on tolerance) 12s

Figure 8 illustrates the distribution of those hyper Gauss points. The distribution of the points is mainly
concentrated on traction/compression zones, indicating, as expected, that these regions are those where the
material behavior is more non-linear.

Simulation on the hyper-reduced model takes less than 30 seconds on the same CPU, corresponding to
a speedup factor above 2000 (as shown in table 2). Figure 9 shows the very good match of the global
displacement of the full and hyper-reduced models.

MODEL ORDER REDUCTION 1895



Figure 8: Localization of integration points selected by the hyper-reduction.

A second hyper-reduction was made for only half cycle, from 1/4 cycle to 3/4 cycle, of the full simulation
to evaluate the possibility of using less data on learning phase. Figure 9 illustrates that outside the transition
associated with the first quarter cycle, the match is still quite good. The differences in the first 1/4 cycle and
the up part of the cycle are rather limited.
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Figure 9: Comparison between the force displacement diagram and the displacement on time for full and
hyper-reduced models.

The hyper reduced model is also accurate for predicting local deformations and stresses as illustrated by
figure 10.
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Figure 10: Stress comparison on three different points. The first on the center of the compressed zone, the
second on the sheared zone and the last in the edge of the compressed zone.

Another benefit from hyper-reduction on explicit systems is the increased stability over timestep size, since
smallest element length is no longer taken into consideration, and also, high frequency modes are filtered
by the kinematic reduction. To illustrate the difference, articulation response for a force impulse in Ricker
form with 5kN amplitude and 5ms duration is shown in figure 11. For the hyper-reduced model an explicit
integration with a timestep increased by a factor 20 leads to a response with no visible difference.

4.3 Extrapolation accuracy

Harmonic loading at low frequency is an interesting tool for performance assessment in terms of comfort
analysis, but there are other fields that require different solicitations. For example, lower amplitude and
higher frequency solicitations may be pertinent for evaluating vehicle dynamic behavior when going over a
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Figure 11: Articulation impulse response.

bumpy road. Figure 12 show the response to the articulation at 100Hz and 50N of amplitude. Both local and
global behaviors are well represented by the hyper-reduced model, even if these conditions are very far from
the learning conditions.
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Figure 12: Articulation response to high frequency and low amplitude: global behavior on the left and
localized stress on the right.

5 Conclusion

This first study clearly demonstrated the great potential of hyper-reduced models of rubber articulations.
The 3 order of magnitude CPU speedup and memory decrease that was achieved, makes direct use for
multi-body simulations a clear perspective. Efficient use will however require the development of proper
strategies to build the learning subspace that are more evolved than the simple monoaxial harmonic response
considered here. For different amplitudes and material constants, the results seem to be robust so far. But in
the long term, one will need to account for multi-axial transient loading for a range of materials. Furthermore,
geometry studies will be necessary to achieve the method full potential.
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