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ABSTRACT: Rubber mounts are elements of extreme importance in automotive suspension, and accurate
modeling is crucial for comfort design. While mount characterization is typically done using cycles, actual
performance is often associated with transients. The paper thus focuses on the impact of power dissipation
on suspension models during transients. For scalar or 0D hysteretic models that respect Madelung rules and
Masing’s law, a method is introduced to compute instant dissipation even for models where it is not explicitly
available. It is shown that stiffness and dissipation depend only on the last turning point and this dependence
should be the core aspect for identifying and modeling hysteretic dissipation. The second section introduces
two different 0D models having the same full cycle dissipation and force amplitude, thus the same storage and
loss moduli in a first harmonic approximation of the mount behavior, though having different instantaneous
dissipation. The case of a transient starting torque soliciting a suspended powertrain is finally considered. The
different suspension models are shown to have different instant dissipation which might deeply modify the
conclusions drawn from the dynamic simulation.

1 INTRODUCTION

Rubber mounts are widely used in automotive indus-
try due to their unique combination of moderate stiff-
ness and high dissipation. These properties are partic-
ularly interesting for softening and filtering vibrations
in articulations between moving parts. Despite the in-
tense utilization of rubbery materials, their behavior is
still subject of active research, given that current mod-
eling strategies cannot provide fully predictive design.

One of the main modeling demands for this type
of articulations comes from multibody simulations
where a low computational cost is a modeling con-
straint. For this reason, scalar or 0D models are the
most commonly used for emulating rubber articula-
tions. These models can describe and accumulate dif-
ferent nonlinear effects, while keeping a relatively
low complexity. Models of this kind are often found
in the specific literature such as Coveney & Johnson

(2000), Sjöberg (2002), Bourgeteau (2009).

To identify this complex behavior, the most used
technique is to impose cyclic solicitations and fit the
force response with scalar models. Cyclic identifica-
tion does not provide information on dissipation dur-
ing transients. The first section describes hysteretic
models which are the focus of this work. It is in partic-
ular shown how instant dissipation, even if is not ac-
cessible experimentally, can be computed and used as
a valuable asset for analysis, by giving an estimation
of when and where the dissipation is concentrated.
The second section describes two models equivalent
from the point of view of cyclic dissipation but lead-
ing to very different behavior in an engine start simu-
lation.



2 HYSTERETIC MODEL

In the scope of this work, hysteresis is taken as a
rate-independent behavior that respects the Madelung
rules and the Masing’s law (see Brokate & Sprekels
(2012)). The rate-independence means that viscoelas-
tic contribution is not taken in account and should be
object of further work.

The Madelung rules state that :

• Any curve Γ1 emanating from a turning point
A of the force/displacement graph (figure 1) is
uniquely determined by the coordinates of A.

• If any point B on the curve Γ1 becomes a new
turning point, then the curve Γ2 originating at B
leads back to the point A.

• If the curve Γ1 is continued beyond the point
A, then it coincides with the continuation of the
curve Γ which led to the point A before the
Γ1 − Γ2 cycle was traversed.
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Figure 1: Illustration of Madelung rules

Noting + the curve that leads A to B and − the
curve that leads B to A. The cycle closure, or the fact
that every turning point must be passed though again
before reaching greater deformation, can be written as
the integral of the tangent stiffness or slope K(e) =
∂f/∂e over two half cycles

0 =
eB∫
eA
K+(e− eA)de+

eA∫
eB
K−(e− eB)de

=
eB−eA∫

0
K+(e)de+

0∫
eB−eA

K−(e)de

=
eB−eA∫

0
(K+(e)−K−(−e))de

(1)

Since this is true for any cycle length, the tangent stiff-
ness is an even function of the displacement, that is
K+(e) = K−(−e). Thus in figure 2 rather than dis-
playing the classical cycle on the top, one chooses to
represent the tangent stiffness.

Other hysteretic model main characteristic is the
fact that the first loading curve should be homothetic
to the first unloading curve, with a scale factor of two,
known as Masing’s law (Brokate & Sprekels 2012).
Combining both laws, illustrated in figure 2, one can
represent K(e) as a function of distance to turning
point with a factor 2 on e when starting from 0.

Concerning dissipation, the parity property is quite
useful, since dissipation can be split equally between
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Figure 2: Illustration of Masing’s law. a) classical cycle, tangent
stiffness as function time (b) and distance to turning point (c)

loading and unloading. From any turning point A and
current point B, it is possible to close a cycle going
back to point A, where dissipation verifies

Ed =
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eA
Fdisde = 1

2

∮
Fde

= 1
2
(
eB∫
eA
F+de+

eA∫
eB
F−de)

=
eB∫
eA
F (e)de− F (eB − eA)(eB − eA)

(2)

which can be used to compute the instantaneous value
of dissipated energy.

These rules are applicable when neglecting vis-
coelastic and nonlinear elastic effect. Figure 3 illus-
trates tests with triangular enforced displacement. A
low, constant speed was used to minimize viscoelas-
tic effects which should remain negligible. Nonlinear
elastic effects, from both geometric and material na-
tures are also negligible due to the use of deforma-
tions below 10%.
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Figure 3: Imposed displacement and force-displacement re-
sponse



The results are shown in the force/displacement
plane in figure 3. This plot suggests that the stated
hypotheses are plausible, but a simpler verification is
to show, as in figure 4, the instant stiffness as function
of the distance to the last turning point. In this repre-
sentation, the verification of hypotheses is confirmed
by the superposition of all curves.
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Figure 4: Tangent stiffness as function of distance to last turning
point

Since theK(e− eturn) curve completely defines an
hysteretic model, a non-parametric representation of
the behavior is simply achieved though its discretiza-
tion. Segalman (2005) in his work proposes a model
based on a rheologic representation, shown in figure
5. This model allows the reproduction of the curve re-
specting both laws with a continuous force evolution
and control on the accuracy.
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Figure 5: Rheologic scheme for Iwan’s model

Despite needing a high number of Jenkins cells for
accurate representation, as seen on figure 6, the low
computational effort associated to each cell makes it
an interesting model for application purposes.
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Figure 6: Illustration of Iwan’s model response

An alternate hysteretic model that respects the
stated hypotheses is the STS model, introduced and

detailed by Coveney & Johnson (2000). This model
is based on an spring in parallel of an assembly of
identical Jenkins cells in series, shown in figure 7. By
making the springs stiffness tend to infinity and the
friction forces tend to zero, with their product con-
stant (ktFf = Ct), one reaches to a continuous model,
defined by the equation 3.
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Figure 7: Rheologic scheme for the STS model

F − Fturn =
√
NCt|e− eturn|+ NCt

2kpa

2

−NCt

2kpa
sign(e− eturn)

(3)

3 NONLINEAR ELASTICITY AND
HYSTERETIC DAMPING

In order to apply the the models on section 2, identifi-
cation tests were made on three mounts that compose
a powertrain suspension. These tests were made with
enforced displacement at constant and low speed, and
the results are illustrated by figure 8.
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Figure 8: Force/displacement response for the three tested
mounts

The curly shape of test data suggests the presence
of a non linear elastic component and classical dis-
sipative models are not capable of representing this
kind of behavior. A nonlinear elastic model was built
using the mean test load for each displacement and is
shown in figure 9 left.

The remaining forces, shown in figure 9 right, are
supposed to be the generated by the dissipative model
in parallel of the nonlinear elastic model. The left
mount (and on a smaller scale the anti torque mount)
presents significantly less dissipation around null dis-
placement. It is probably because a significant part
of the rubber is not excited within small displace-
ments, and after a certain level, it is solicited by a
self-contact.
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Figure 9: Non-linear elastic response (left) and dissipative forces
(right) for the tested mounts

Tracing the stiffness as function of distance to the
turning point without the nonlinear elastic contribu-
tion, in figure 10, as it was suggested in section 2, one
can see that its evolution for small distances to the
turning point is quite similar to the ones provided by
hysteretic models. The absence of dissipation around
null displacement creates bumps in the curves be-
tween 6 and 10 mm, more visible for the left mount.
The end of the curve shows strong negative stiffness,
as for a form of symmetry, which is probably due to
the removal of a nonlinear elastic part.
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Figure 10: Stiffness in function of the distance to the last turning
point without nonlinear elastic component

To fit the dissipation in parallel of the non-linear
elasticity, two different models were used: one is the
STS model and the other is a simple viscous dissipa-
tion. Both models were tuned to dissipate the same
amount of energy for a harmonic solicitation with
frequency close to the powertrain rolling frequency
(around 10 Hz), with the same amplitude as the iden-
tification tests. Figure 11 shows the instant dissipation
for both models of the right mount under the stated
load, and even if the total dissipation is the same, their
instant dissipation is different.

4 APPLICATION CASE

With the mounts identified, a model of the whole
powertrain suspension was developed. The power-
train unit modeled by its mass and inertia matrix,
while the three mounts are attached on one side to the
powertrain unit, and the other to the chassis, consid-
ered as rigid as shown in figure 12. The model input
is the engine torque, applied in the direction of the
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Figure 11: Instantaneous dissipation for a STS model and a vis-
cous model under harmonic solicitation

crankshaft and whose time evolution is illustrated in
figure 13, and the outputs are the forces exerted by the
three mounts on the body.

Figure 12: Assembled powertrain unit and its suspension
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Figure 13: Measured torque for a starting engine

Figure 14 shows the experimental results and sim-
ulated forces for both models in the direction of the
vehicle motion.

With forces and displacements available for post
treatment, viscous dissipation may be explicitly com-
puted, and hysteretic dissipation may be computed by
equation 2. Figure 15 illustrates the evolution of dissi-
pated energy for both computed models, and it high-
lights the fact that for this transient simulation, the
dissipated energy differs both in total dissipated en-
ergy and timing of when the energy is dissipated. This
demonstrate that the original equivalence shown in 3
is not sufficient to provide a proper transient simula-
tion.
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Figure 14: Measured and computed forces at the mounts. Top:
Left mount; Middle: Right mount; Bottom: Anti-torque mount
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Figure 15: Dissipated energy for each model

To analyze the implications of this difference into
the system level, a modal analysis was carried around
the resting position of the engine. As expected, the six
powertrain modes are three translational modes and
three rotational modes, listed in table 1.

Table 1: Powertrain suspension modes
Mode description Frequency
Translation perpendicular to vehicle direction 4.00Hz
Translation in vehicle direction 6.04Hz
Translation in vertical direction 7.13Hz
Pitching powertrain 9.18Hz
Yawing powertrain 11.66Hz
Rolling powertrain 13.38Hz

Modal amplitudes are the decomposition of the
displacement on the directions of the eigenvectors
(Bianchi, Balmes, Vermot Des Roches, & Bobillot
2010). This decomposition of the displacement vec-

tor q is given by

qj = φj
TM {q} (4)

with φ the mass normalized eigenvectors and M the
mass matrix, and qj the amplitude associated to the
mode j. The time derivative of those amplitudes yield
the modal speeds which are also necessary for com-
puting modal energies using

2Ej = q̇2j + ω2
j q

2
j (5)

with Ej the energy and ωj the frequency associated to
mode j. This information is useful to know where the
energy flows before being dissipated. Modal energy
evolution through time is shown in figure 16, for both
hysteretic and viscous models.
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Figure 16: Modal energies for each model. Top: Viscous model;
Bottom: Hysteretic model

Modes 4 and 5 take most of the imposed energy on
the system, which is natural, since they represent the
rotations along the direction of the imposed torque.
The different dissipation models impact strongly on
how the energy is transmitted to modes, leading to
conflicting information of which mode is more im-
portant to address.

5 CONCLUSION

This work focused on a specific range of models
whose objective is to emulate the rate-independent
nonlinear component of rubber mounts behavior.
Models of this type used in industry are often iden-
tified with full-cycle dissipation equivalence. This
equivalence does not take into account all the nec-
essary aspects for a predictive transient simulation.
To sustain this argument, an application case where a
starting powertrain unit was simulated with two sus-
pension models that differ only on the dissipation in-
stants and the simulations would lead to different de-
sign choices.



The need for identification strategies accounting for
a conservative nonlinear elastic part, rate-dependent
dissipation (viscoelastic) and rate-independent (hys-
teretic) dissipation has only been illustrated here and
should be an important aspect of future work. For
industrial application, evolution of dissipation with
non-linear elasticity may also represent an important
component of the model for many mounts.

REFERENCES

Bianchi, J. P., E. Balmes, G. Vermot Des Roches, & A. Bobillot
(2010). Using modal damping for full model transient anal-
ysis. application to pantograph/catenary vibration. In ISMA,
pp. 376.

Bourgeteau, B. (2009). Modélisation numérique des articula-
tions en caoutchouc de la liaison au sol automobile en simu-
lation multi-corps transitoire.

Brokate, M. & J. Sprekels (2012). Hysteresis and phase transi-
tions. Springer.

Coveney, V. A. & D. E. Johnson (2000). Rate-dependent mod-
eling of a highly filled vulcanizate. Rubber chemistry and
technology 73, 565–577.

Segalman, D. J. (2005). A four-parameter iwan model for lap-
type joints. Journal of Applied Mechanics 72(5), 752–760.
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