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ABSTRACT – In presence of squeal, Operational Deflection Shapes (ODS) are classically 
measured to gain understanding of brake behavior. A simple numeric example is analyzed to 
justify the use of time-frequency analysis and shows that two real shapes should probably 
dominate the response. Using measurements on a real brake, this expectation is shown to hold 
even in the presence of variations with wheel position as well as for reproducibility tests. For 
a proper relation with the model, it is desirable to also extract modes. The test campaign is 
used to illustrate how this can be quite difficult due to reproducibility problems. Finally, 
shapes characterizing the squeal event are fundamentally limited by measurable quantities. 
Minimum Dynamic Residual Expansion (MDRE), which estimates test motion at all FE 
degrees of freedom, is shown to be applicable for industrial models and gives insight of test 
and model imperfections. 

INTRODUCTION 

Squeal being an undesired condition, its appearance is never predicted by initial design 
models, when they exist, and experiments are needed to understand the exact conditions of 
occurrence. Models are however necessary to understand how measurements should be post-
processed to obtain characteristic shapes that will later be used to propose design changes. 
Finite element models are also necessary to estimate unmeasured motion using expansion 
techniques that will be detailed here and evaluate the impact of modifications.  

All measurements used throughout this paper have been performed on a drum brake system 
shown in Figure 1. On the pictures, the drum was removed to see the internal instrumentation. 
For this brake, a low frequency squeal occurrence (about 900Hz) has been found on vehicle 
and needed to be reproduced on bench for further analysis.  

Figure 1 : Drum brake measured for the experimental analysis of squeal 



The measurement geometry has been built from the numerical mode shapes, using the MSeq 
algorithm [1], to distinguish the modes in a frequency band around 900Hz. The provided 
sensor placement was then adapted to the constraint of positioning feasibility and each sensor 
location was in finally measured using triax sensors to also permit the direct exploitation (at 
least visual) of the measurement without the use of expansion if needed : visual interpretation 
of shapes is very difficult with uniaxial sensors. The experimental wireframe geometry, on 
top of the FEM is shown in Figure 2 

Figure 2 : Measurement wireframe on top of the FEM 

Due to the high number of sensors and the limited number of measurement channels, 4 
sequential measurement batches are needed and 4 uniaxial reference sensors will be used to 
control the merging quality.  

The aim of the measurement campaign was to extract so called Operational Deflection 
Shapes (ODS) to characterize the limit cycle found during a squeal occurrence. The classic 
procedure at CBI is to generate a single spectrum associated with a squeal occurrence and 
extract a shape associated with a main resonance. The simple numerical model discussed in 
Section 1 illustrates that the shapes associated with squeal instabilities are expected to be 
dominated by the combination of two real modes but that the combination may be quite 
sensitive to changes.  
Knowing that a limit cycle is expected to be composed of a time varying combination of two 
shapes, Section 2 exploits time-frequency analyses of the measurements to demonstrate that 
indeed two real shapes dominate the response and have variations that are coherent with the 
changes due wheel position. A reproducibility test further shows that, while different 
experiments can lead to notable frequency shifts, the shapes underlying the limit cycle are 
fairly constant.  
Section 3 then illustrates that transfers measured to allow classical modal extraction show 
major shifts in reproducibility tests so that proper extraction of modeshapes appears as a 
challenge needing the development of novel methods. 
Finally, the spatial resolution of the test remains quite low even if sequential measurement 
batches are merged. As a result, using modeshapes expansion techniques to estimate the full 
FE response from measurements appears as a necessity to provide understanding of 
inconsistencies between model and test and thus pave the way for the proposition of 
modifications. The Minimum Dynamic Residual (MDRE) method  [2] is applied in Section 4 
to illustrate the potential uses. It is shown that expanded shapes give better understanding of 
the brake motion and that repartition of the residual energy after expansion gives insight on 
modeling errors. 



1. EXPECTED SHAPES IN A SQUEAL EVENT  : A SIMPLE EXAMPLE

To motivate the procedure used to analyze shapes during a squeal event, a simple numeric 
example is analyzed here. Without going into the details, which can be found in [3], the 
complex mode shapes come from the linearization of the model around a chosen state 
(pressure, velocity…). The linearized model provides a system of the form 

[𝑀]{�̈�(𝑡)} + [𝐶]{�̇�(𝑡)} + [𝐾௦ + 𝐾௨]{𝑞(𝑡)} = {𝑓௫௧(𝑡)} (1) 
where 𝑞, �̇� et �̈� are displacements, velocities and acceleration, M, C, K are respectively the 
mass, damping and stiffness matrices supposed constant. The stiffness matrix can be 
decomposed in a symmetric part 𝐾௦, coming from the elastic properties of each components 
and the linearization of the normal contact loads and a non-symmetric part 𝐾௨ linked to the 
fluctuation of the tangential loads induced by the fluctuation of the normal loads. It is 
classical to project the system in the so-called real mode basis [𝛷], found by solving the 
system with [𝐶] = 0 and 𝐾௨ = 0 (which is equivalent to consider a friction coefficient 𝜇 =
0). The system to solve is then 

ቀቂ ∖𝜔
ଶ

\
ቃ + [𝛷்𝐾௨𝛷] + 𝜆[𝛷்𝐶𝛷] + 𝜆

ଶ[𝐼]ቁ ൛𝜓ோൟ = 0 (2) 

with the spatial Degrees Of Freedom (DOFs) linked to the reduced ones by ൛𝜓ൟ = [𝛷]{𝜓ோ}. 

The numeric case is a simplified brake of which the mesh geometry is shown in Figure 3. The 
disc (blue) and the backplate (yellow) materials is steel and the friction (green) is made of an 
orthotropic softer material, about 5GPa with an additional Rayleigh damping (see the 
introduction of [3] for details). The model is clamped at 4 locations at the interface between 
the backplate and the friction (similar to the one circled in the figure). 

Figure 3 : Simple brake model geometry (left) and real mode shapes #8 and #9. (right) 

This model has an unstable (negative damping) complex mode at 5050Hz which corresponds 
to the interaction between the two real modes #8, with a mostly out-of-plane deformation, and 
#9 with mostly a deformation of the pads sliding on the disc. 

To confirm that the complex mode shape mainly comes from the interaction between the two 
real mod shapes, the friction coefficient is swept from 0 to 0.2 (not a physical value but still 
relevant for the interpretation). The left of Figure 4 shows that the two firstly stable (red 
circles) complex modes (#8 and #9) evolve with the increase of the friction coefficient. Mode 
#8 becomes unstable while the mode #9 is more and more damped.  

Figure 4 : Evolution of complex modes with the friction coefficient: roots (left), real mode participation to the 
complex mode #8 (middle) and phase between real modes #8 and #9 (right) 



From Equation 4, it is possible to look at the evolution of the real mode participation (𝜓ோ) of 
each modal DOF with the normalization ‖𝜓ோ‖ = 1. At the middle of Figure 4, the 
participation of the real modes to the complex mode #8, which become unstable, evolves from 
100% of real mode #8 (blue line) to 70% of real mode #9 (red line) and 70% of real mode #8. 
Dephasing also occurs: the left of Figure 4 shows the evolution of the phase between the real 
modes #8 and #9 in their contributions to the complex mode #8. 

To evaluate the pertinence to use only two real modes to interpret the unstable modes, the 
Equation 4 is reduced on the 2 real mode shapes #8 and 9, leading (with the assumption of 
modal damping) to 
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The comparison between the system reduced on the 2 real modes on the one hand and on all 
real modes on the other hand is provided by Figure 5. The precision on the complex mode 
frequencies is worst when considering two real modes for reduction, but the coupling still 
occurs and the damping computation is almost unchanged. 

Figure 5 : Comparison between complex modes frequencies (left) and dampings (right) for reduction on 2 real 
modes (dashed lines) and on all real modes (full lines). 

The common practice in presence of coupled modes is to try moving the frequencies away 
from each other. Doing so on the model reduced on two real mode shapes, by moving away 
their frequencies with the same percentage (modifying 𝑘ଵ, 𝑘ଶ, 𝑐ଵ, 𝑐ଶ but not the non-symmetric 
stiffness part), results in the evolution of the complex frequencies and damping shown in 
Figure 6. As mode #9 damping decreases, mode #9 one increases until it is no more unstable. 
The dot lines represent the values of the frequencies 𝑓  𝑓ଽ and dampings 𝜁଼ 𝜁ଽ. When the 
frequencies are moved away, the influence of the coupling stiffness decreases and the mode 
parameters converge toward the ones without coupling at all. 

Figure 6 : Evolution of the complex mode frequencies and dampings by moving away the frequencies of real 
modes #8 and #9 



2. TIME FREQUENCY ANALYSIS

To analyze the evolution of the squeal with time, the Gabor transform is used to decompose 
the signal in the time-frequency domain. It consists in a Short Time Fourier Transform where 
at each time step, the signal is convolved with a Gaussian window whose standard deviation 
√∆𝑡ଶ is used to choose the compromise between time and frequency resolution, fixed by the

Heisenberg-Gabor equality √∆𝑡ଶඥ∆𝑓ଶ =
ଵ

ସగ
. 

Figure 7 : Gabor transform of a squeal measurement (left), time slices (right) 

The Gabor transform is applied to the measurement on an arbitrary sensor with a very good 

frequency resolution ඥ∆𝑓ଶ = 0.5𝐻𝑧 which induces a quite poor time resolution √∆𝑡ଶ =
0.1592𝑠, acceptable because the squeal behavior evolution with time is slow. The Figure 7 
left shows that during the squeal, the frequency shifts between 906Hz and 913Hz. Three time 
slices on the right of the figure also highlight the amplitude evolution of the main resonance. 
A smaller peak of amplitude, constant in frequency at 900Hz, is present for each measurement 
and is due to a harmonic of the power supply of the bench (50Hz). 

To evaluate in detail the evolution of the behavior, at each instant 𝑡, the frequency where the 
amplitude is maximum 𝑓௫(𝑡) is found, and the corresponding shape {𝑦(𝑓௫(𝑡), 𝑡)} is 
extracted. All these shapes are concatenated and real plus imaginary parts are decomposed 
with the Singular Value Decomposition providing sorted real shapes ൛𝑈ൟ 

[𝐹] = [ℜ(⋯𝑦(𝑓௫(𝑡), 𝑡)⋯) ℑ(⋯𝑦(𝑓௫(𝑡), 𝑡)⋯)]ேௌ×ଶே் =  ൛𝑈ൟ𝜎൛𝑉ൟ
்


(4) 

with NS the number of sensors and NT the number of time steps. 
The family [⋯𝑦(𝑓௫(𝑡), 𝑡)⋯] can then be decomposed on these real shapes, leading to 

[⋯𝑦(𝑓௫(𝑡), 𝑡)⋯] ≈  ൛𝑈ൟ
ேௌ×ଵ

൛𝑎(𝑡)ൟ
ଵ×ே்

(5) 

with 𝑎(𝑡) = 𝜎 × (𝑣(𝑡) + 𝑖𝑣(𝑡 + 𝑁𝑇)). 

Figure 8 : Time evolution of the main real shapes ห𝑎(𝑡)ห (left) and relative evolution between the two main 
shapes 𝑎ଶ(𝑡)/𝑎ଵ(𝑡). 



The Figure 8 shows on the left the time evolution of ห𝑎(𝑡)ห and it is clear that the limit cycle 
shapes rely only in a 2 dimension space engendered by the two main real shapes [𝑈ଵ𝑈ଶ]. The 
relative evolution between the two main shapes 𝑎ଶ(𝑡)/𝑎ଵ(𝑡) is analysed in the right showing 
a quite high important evolution in amplitude in the range 0.75-1 and a low phase evolution 
between -85° and -100°. The variability of the limit cycle, despite the evolution of the 
complex shape, stays in the same subspace in an analogous way than the numerical result 
regarding the evolution of the unstable complex modes with the friction coefficient. 

The reproducibility needs then to be evaluated. For this purpose, a second squeal has been 
measured a day after the first measurement, leading to potential evolution of parameters such 
as pressure map, relative component placement or temperature. The time-frequency evolution 
of this second measurement and for the same sensor is shown on Figure 9. A quite important 
frequency shift is also found from 917Hz to 925Hz and is in average more than 10Hz higher 
than the first one. 

Figure 9 : Gabor transform of the second squeal measurement. 

The family containing the two measurement, normalized to have the same weight 

[𝑦(𝑡)] = ቈ
[⋯𝑦ଵ(𝑓௫(𝑡), 𝑡)⋯]

‖⋯𝑦ଵ(𝑓௫(𝑡), 𝑡)⋯‖

[⋯𝑦ଶ(𝑓௫(𝑡), 𝑡)⋯]

‖⋯𝑦ଶ(𝑓௫(𝑡), 𝑡)⋯‖
 (6) 

is used and decomposed in the same way than previously with Equations 4 and 5. The 
evolutions of the amplitudes ห𝑎,ଵ(𝑡)ห and ห𝑎,ଶ(𝑡)ห, related to the common main real shapes 
shown in Figure 10. The predominance of the two main real shapes is a bit less clear than 
when the first measurement was decomposed alone (see Figure 8 left), but still there. 

Figure 10 : Time evolution of the common main real shape amplitudes for the first measurement ห𝑎,ଵ(𝑡)ห (left) 

and the second measurement ห𝑎,ଶ(𝑡)ห (right). 



Using the hypothesis that iterative squeal measurements rely on the same subspace, an 
algorithm to merge the 4 measurement batches using the 4 common sensors has been 
developed. It is not possible to enter into the details in this paper, but the result provides two 
real main shapes at all sensors which can then be exploited as a whole to analyze the 
deformations or to perform expansion using a FEM. 

3. TRANSFERS FOR MODAL EXTRACTION

In the previous section, the extracted shapes correspond to the limit cycle during the squeal, 
providing mainly two shapes. For model updating purpose, the classical way to tune the 
model parameters is to use experimental mode shapes as references. Many studies on the field 
of extracting modal data in operating conditions have been performed, and an interesting 
review can found in [4]. For this first test, a classical Experimental Modal Analysis has been 
implemented, using an electrodynamic shaker. 

The exploitation of the mode shapes for correlation activities needs a good representability of 
the operating conditions and a good reproducibility. To evaluate the dependency to the 
operating conditions, several measurements were realized. From the least to the most 
representative operating conditions, we considered: braking under 20bars without sliding, 
then addition of 100Nm torque, then 200Nm torque and finally under sliding conditions. 

The repeatability is evaluated by comparing the transfers between a position of the shaker and 
an arbitrary reference sensor, measured for each of the 4 batches. The Figure 11 shows for 
each operating condition the superposition of the 4 transfers. 

Figure 11 : Reproducibility of transfers for the position #2 of the shaker and the reference #1, under 20 bars for 
different operating conditions: static (top left), 100Nm torque (top right), 200Nm torque (bottom left) and under 
sliding conditions (bottom right). 



The repeatability for the static measurement is very poor : the 4 transfers are very different. 
With the addition of the torque, especially with 200Nm, some similitudes between the 
transfers can be found, but the merging seems nevertheless at worst very difficult to put in 
place and at best with a very doubtful result quality. Moreover, the capability to make the link 
with the squeal which occurs in sliding condition remains a question. 

With the sliding conditions, the noise level is higher than for the other transfers. This is due to 
the internal loads induced by the sliding between the drum and the shoes. Their effects on the 
response are considered uncorrelated to those engendered by the controlled input force and 
thus removed by the several averages (the H1 estimator is used). Despite the higher noise 
level, the repeatability is better with a resonance around 900Hz. The merging seems possible 
and the operating conditions are closer to the squeal ones. 

Extraction and evaluation of the mode shapes from measurement under sliding conditions are 
a perspective. The need for a time-frequency identification algorithm, allowing taking into 
account the fluctuations during braking, is a question. 

4. EXPANSION METHODS APPLIED TO THE TEST CASE

The two shapes obtained from the exploitation of the limit cycle measurements are used to 
perform expansion with a FEM. The MDRE [2] algorithm is used, which consist in finding 
the shape ൛𝜙ൟ that minimize the weighted sum of two energies: 𝜖ௌ linked to the residual 
force 𝑍(𝜔)൛𝜙ൟ = 𝑑𝐹(𝜔) (not zero because the model is not exact) and 𝜖ெ௦ linked to the 
measurement error (the error between the measured shape and the observation at sensors of 
൛𝜙ൟ). The cost function is then written 

𝐽 = 𝜖ௌ + 𝛾𝜖ெ௦ 
with 𝛾 the ponderation between the two errors. 

The FEM is reduced on a basis combining the response to unit loads at sensors, for the result 
to be at least as good as the static expansion, and the free modes of the structure, for the 
expansion to be exact if the model matches perfectly the measurements. This family of shapes 
is orthonormalized with respect to mass and stiffness matrices, leading to the basis 

[𝑇] = ൣ[𝛷]ேெ[𝛷ୄ]൧ 
with [𝛷]ேெ the free mode shapes and [𝛷ୄ] the part of the response to unit loads at sensors 
that is orthogonal to the free modes (this part will be called later enrichment). 

The interest of this model reduction is that it can be useful if the expansion is used in 
combination with an updating procedure, to speed up the parametrized studies. It also permits 
a quick evaluation of the MDRE result with several values of the parameter 𝛾 which allows 
more or less measurement error. 

The expanded shapes are shown in Figure 12. The first one is dominated by the deformation 
of the brake lever. The second shape is mostly a deformation of the right shoe. The analysis of 
the squeal behavior with the expanded shapes is simpler than with only the deformations at 
sensors. It can help providing modification propositions to impact the phenomenon. 



Figure 12 : Expansion result for the two extracted experimental shapes form the limit cycle measurements. 

The expansion can also be used to analyze the model quality. Indeed, the repartition of the 
energy coming from the residual forces shows areas of the model where the mechanical 
equilibrium is poor. This residual energy can be split in two: the residual energy related to the 
free mode shapes, and the residual energy related to the enrichment shapes. 

The Figure 13 shows the repartition of the residual energy related to the enrichment shapes: it 
is mostly a concentration of energy at the sensor locations. Those with the highest energy are 
on the brake lever (A), at the middle of the shoe (B) and at the attachment + the middle of the 
arm (C). 

Figure 13 : Model error on the enrichment shapes 

The Figure 14 shows the repartition of the residual energy on the free mode shapes. This 
energy is more global with nevertheless several concentration areas: in the arm (A), 
confirming the need to look at the definition of the attachments to the ground and possibly to 
perform an updating of the component, close to the contact between the plate and the arm (B), 
and at two contacts between the shoe and the plate (C). 

Figure 14 : Model error on the free mode shapes 
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Using these residual energy maps helps in defining a relevant parametrization of the model to 
perform model updating if needed. 

5. CONCLUSION

This study shows that the interpretation of the squeal behavior as an interaction between two 
real shapes makes sense, not only numerically but also experimentally. The reproducibility of 
the phenomenon, despite frequency shifts, is good when the subspace is compared instead of 
the complex shapes directly: the limit cycle lies in a two dimension subspace with a slow 
relative evolution. 

The extraction of mode shapes needs measurements in sliding conditions to be closer to the 
squeal conditions and to gain in reproducibility of the measurements. The extraction of the 
modeshapes on the sliding conditions and possibly the use of an algorithm taking into account 
the presence of internal forces and the possibly time varying nature of the system is a 
perspective. 

Finally, the expansion of the two shapes extracted from the limit cycle measurements is useful 
to better interpret the brake behavior. It can moreover be used to find areas where the model 
seems wrong and thus to help in the definition of a relevant model updating study. The 
updating of this model and its impact on the expansion result is another perspective of this 
work.  
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