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It is proposed to analyze the forced response of periodic structures using a 2D Fourier transform using continuous
time and discrete space. The simple example of compression waves is used to show that this response can be used
to define poles in the wavenumber domain corresponding to evanescent waves or poles in the frequency domain
corresponding to damped periodic modes. Link with classical computational methods based on FEM models of
cells was done for both the periodic solution and wave based approach (SAFE, WFE). Two examples are analyzed
in more detail: a simple train track model exhibiting a band-gap and the more complex case of a honeycomb panel
where cell wall bending occurs within the band of interest.

1 Introduction
At the material level, damping is typically well taken

into account by considering viscoelastic materials with a
constant or frequency dependent complex modulus [1, 2]
where the usual characterization is associated with the loss
factor giving the ratio of dissipated energy per cycle over
maximum strain energy. When performing modal analysis of
finite structures [3] or system dynamics in general, damping
is characterized by the damping ratio of poles associated
with complex modes which gives a measure of amplitude
decrease for each time period. This definition is for example
the basis of the traditional logarithmic decrement method.
When considering plane waves, the classical approach is
to consider the forced response at a given frequency and
characterize the effect of damping through the evanescence
associated with the exponential decrease with space, as
illustrated in [4] for example. Relating spatial evanescence
and classical characterizations of modal damping ratio is
however not direct and will be the focus of this paper.

When considering mono-dimensional wave propagation,
the novel argument made in this paper is that it is useful to
analyze 2D-transfer function in the angular frequency and
wavenumber domains resulting from the Fourier transform
of responses in time and space. The proposition can be
seen as a specific post-processing of results computed
using SAFE methods [5] for models that are continuous in
space and WFE methods [6, 7, 4, 8] for spatially periodic
structures, such as the tracks and honeycomb panels that
will be used as examples here. In both cases, the 2D transfer
is computed as a function of frequency. It is however useful
to note that solvers for periodic solutions [9, 10, 11] are
a completely different strategy to compute the same 2D
transfer functions. In these methods the 2D transfer is
computed at different wavenumbers.

Section 2 will analyze the base concepts associated
with 2D transfer functions using the simple case of
compression waves, illustrating in particular the relation
between mode damping and wave evanescence and the
specificities associated with responses that are sampled in
space. Section 3 will then give a perspective on numerical
strategies used in periodic and wave approaches. Finally,
using FEM solutions implemented in SDT [12], section 4
will illustrate possible analyzes for a simple track model
with a bandgap and a honeycomb panel considered in SHM
applications [13].

2 Formulation for a continuous case

2.1 2D Fourier transforms in space and time
Considering a field g(x, t) depending on both time t and

space x, the two-dimensional Fourier transform (2D-FT) is
given by Eq. (1).

g(x, t)
2D−FT
−−−−−→ G(k, ω) =

"
R2

g(x, t)e−ikx−iωtdxdt (1)

where k and ω are the wavenumber and angular frequency.
A structure is said spatially periodic when it is composed

of geometrically identical cells (labeled “slices” in this
paper), generated by a translation in a predefined direction
(x in the following work) from the reference slice.

Figure 1: Sample spatially periodic structure

Using this geometric periodicity, any mechanical field of
interest is known at a series of points associated with slice
number n and position x0 within the reference slice, that is
g̃(n, t, x0) = g(x0 + n∆x, t) with n ∈ [−∞ ∞]. In that case,
the two-dimensional discrete space Fourier transform (2D-
DSFT) of g̃(n, t, x0) is defined as

g̃(n, t, x0)
2D−DS FT
−−−−−−−−→ G̃(κc, ω, x0) =∑+∞

n=−∞

∫
R

g̃(n, t, x0)e−iκcn−iωtdt
(2)

where κc and ω are the dimensionless wavenumber and
angular frequency. By definition, the function G̃ is 2π
periodic in κc. It is useful to note that the spatial transform
thus built is often referred to as Floquet transform. The
conventions used in this work regarding this spatial
transform are the following

• nc is the wavelength or spatial periodicity in number
of cells, so nc ∈ [1 ∞]. The physical wavelength λ in
length unit is then given by λ = nc × ∆x

• The wavenumber κc in rad/number of cells is then
given by κc = 2π/nc, so κc ∈ [0 2π].

The inverse spatial transform allows recovery of the
physical field g based on its wave domain values G̃(κc, ω, x0):

g(x0 + n∆x, t) =
1

2π

∫ 2π

0
G̃(κc, ω, x0)eiκcndκc. (3)

2.2 2D transfer functions for compression
The focus is now put on a simple example involving

longitudinal waves propagating in a homogeneous material.
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The wave propagation equation linking the applied force
f (x, t) and the resulting displacement u(x, t) is

ρ
∂2u(x, t)
∂t2 − E

∂2u(x, t)
∂x2 = f (x, t) (4)

with ρ the mass density of the considered material and E
its Young modulus. Taking the 2D-FT of Eq. (4) leads to a
spatio-temporal transfer function

U(k, ω)
F(k, ω)

=
1

−ρω2 + Ek2 (5)

whose denominator corresponds to well known dispersion
equation, which relates frequencies and wavelengths.

The classical point of view of the literature on wave
propagation is the case where the applied force f (x, t) is
spatially localized at x = 0 and temporally corresponds to an
harmonic excitation at angular frequency ω. This force and
its 2D-FT can then be expressed as

f (x, t) = F0eiω0tδ(x)
2D−FT
−−−−−→ F(k, ω) = F0δ(ω − ω0) (6)

with F0 the force amplitude and δ(.) the Dirac distribution
defined as the neutral element of the convolution operator.
As a consequence of Eq. (5), the response u(x, t) can then be
recovered in the time/space domain as

u(x, t) =

"
R2

U(k, ω)eikx+iωtdkdω = U0eα(ω0)|x|eiω0t (7)

with U0 =
−F0

2α(ω0)E
and α(ω0) such that<(α(ω0)) ≤ 0 and

α(ω0)2 = −
ρω2

0

E
.

In later sections, periodic structures will be considered
and the displacement will be only considered at discrete
locations x = x0 + n∆x. The expression of the corresponding
series is:

ũ(n, t) = u(n∆x, t) = U0eα(ω0)∆x|n|eiω0t (8)

and the 2D-DSFT of the transfer function linking Ũ(κc, ω)
and F̃(κc, ω) is given by

Ũ(κc, ω)
F̃(κc, ω)

=
−1

2α(ω)E
1 − e−2α(ω)∆x

(1 − e−α(ω)∆x+iκc )(1 − e−α(ω)∆x−iκc )
(9)

Figure 2 illustrates the 2D-DSFT of the compression
problem. At low frequencies/wavenumbers, the shapes
of (5) and (9) show a classical single mode resonance at
a wavenumber. The difference becomes clear when the
wavelength reaches ∆x so that a wavenumber alias starts to
appear in the 2D-DSFT.

A second point of view is to compute all frequencies
at a given wavelength. One considers a force f (x, t) that
temporally localized at t = 0 and spatially corresponds to
an harmonic solicitation at a wavenumber k0. The 2D-FT of
this force is given by

f (x, t) = F0eik0 xδ(t)
2D−FT
−−−−−→ F(k, ω) = F0δ(k − k0) (10)

Following the previous approach, the response in the
(x, t) domain is given by

u(x, t) = U0eik0 xeλ(k0)t (11)

Figure 2: Transfer function of compression waves in the
frequency-wavenumber domain as given by Eq. (9) and

Eq. (13).

with U0 =
−F0

2λ(k0)ρ
and λ(k0) such that<(λ(k0)) ≤ 0 and

λ(k0)2 = −
Ek2

0

ρ

If this displacement is known only at discrete locations
x = n∆x in space, the solution is given as

ũ(n, t) = u(n∆x, t) = U0eik0n∆xeλ(k0)t (12)

and the 2D-DSFT of the transfer function linking Ũ(κc, ω)
and F̃(κc, ω) is obtained as

Ũ(κc, ω)
F̃(κc, ω)

=
1
ρ

+∞∑
n=−∞

1
−ω2 + [λ(κc + 2πn)]2 (13)

which is equal to the 2D-DSFT computed in Eq. (9) and
shown in Fig. 2. The interest of using either formulas is in
numerical strategies for periodic models with more degrees
of freedom that will be detailed in section 3.

2.3 Effect of damping
The usual representation of material damping is the use

of a complex, possibly frequency dependent, Young modulus

E = E0(1 + iη) = E0 [1 + i tan(δ)] = |E|eiδ (14)

Given the notations of Eq. (14), the following expressions
are obtained for α and λ

α(ω) = ω

√
ρ

|E|

(
ζ − i

√
1 − ζ2

)
(15)

λ(k) = k

√
|E|
ρ

(
ζ − i

√
1 − ζ2

)
(16)

with ζ = sin(δ/2). In this case, the propagation is non
dispersive and the damping and evanescence ratio are
identical.

When considering values discretized in space aliasing
occurs as shown by Figure 2. The experimentally available
pole αXP(ω) in the wavenumber domain thus verifies

αXP(ω)∆x = < (α(ω)∆x) + i
∣∣∣= (α(ω)∆x) − 2Lπ

∣∣∣ (17)

with L the only integer such that
∣∣∣= (α(ω)∆x) − 2πL

∣∣∣ ∈ [0 π].
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Furthermore, when considering the angular frequency
domain, an infinity of poles have to be considered. They are
given by

λn(κc) = λ(κc + 2πn)

However, in practice only a few of them will really
influence the 2D-DSFT and usual modal truncation and
static correction methods can be used.

3 Structures with geometric periodicity
In practical cases, one will need to consider finite element

models of the cell. This section will thus show how harmonic
responses in the spatial and time domain have both been used
to introduce optimized solvers.

3.1 Periodic solutions in the spatial domain
A key property of periodic systems, see for example

[9], is that for excitations at a given wavelength, described
as a field on the nominal cell U(x0, κcx) associated with
a single wavenumber κcx, the only response occurs at the
same wavelength κcx provided that the geometry and model
properties are strictly periodic. A large FEM problem
with repeated slices can thus be decomposed in a series
of independent problems for single wavenumbers, which
correspond to periodic solutions.

For a solution with a single wavenumber κcx, the field is
simply equal to

u(x0 + n∆x) = <(U(x0, κcx)eiκcxn), (18)

which will be used to compute the periodic solutions.
In the case of structures represented as FE models,

the continuous displacement in the nominal cell u(x0) is
discretized and replaced by a vector {q} of Degrees Of
Freedom (DOF) values.

To ensure the displacement continuity between adjacent
periodic cells, a continuity condition must be introduced.
The displacement on the left boundary of one cell has
to be equal to the one of the preceding cell right edge,
thus

{
qle f t(n∆x)

}
=

{
qright((n − 1)∆x)

}
. Following the

definition given in the previous section, {qn} represents all
the displacements at the DOF of the cell number n. For
each cell, the observation matrices [cl] and [cr] can then be
defined to extract on the whole DOFs the ones corresponding
to respectively left and right boundaries. These matrices are
the same for all cells if the domain is meshed regularly.

For a periodic response associated with a single
wavenumber, taking into account Eq. (18), the continuity
condition can be written as [cl] {Q(κcx, ω)} = [cr] {Q(κcx, ω)} e−2iκcx

which, differentiating real and imaginary parts, leads to

[C (κcx)]
{

Re(Q(κcx, ω))
Im(Q(κcx, ω))

}
= 0, (19)

with

[C (κcx)] =

[
[cl] − cos(κcx)[cr] − sin(κcx)[cr]

sin(κcx)[cr] [cl] − cos(κcx)[cr]

]
.

For an external force { f } applied to the system, s being
the Laplace variable, the first step is to compute the Floquet
(spatial Fourier) transform of the load F(κcx, s). Then the

equations of motion, which are known to be decoupled for
each wavenumber, take the frequency domain form

[Z(ω)] {Q(κcx, ω)} = {F(κcx, ω)} , (20)

where Z(ω) = −Mω2 + K is the dynamic stiffness matrix.
This matrix contains mass M as well as stiffness and
damping in the matrix K. The matrix K can take into
account hysteretic damping (constant imaginary part of K)
or viscoelastic contributions (frequency and temperature
dependent K(ω)), see [2].

Since the frequency response can be complex in the
spatial domain, it is necessary to distinguish real and
imaginary parts of the spatial transform. The equations
actually solved are thus[

Z(ω) 0
0 Z(ω)

] {
Re({Q(κcx, ω)})
Im({Q(κcx, ω)})

}
=

{
Re(F(κcx, ω))
Im(F(κcx, ω))

}
, (21)

with (19) verified.
Solution of a linear system Eq. (21) with constraint (19)

is here obtained by elimination. The continuity condition
is thus taken into account by first seeking a basis T of
ker ([C(κcx)]). Then this basis is used to find the solution of
the constrained problem(

[T ]T [Z(κcx, ω)] [T ]
)
{Q (κcx, ω)} = [T ]T {F(κcx, ω)} . (22)

Solving directly this problem can be fairly long as it requires
inversion of the constrained dynamic stiffness T T Z(ω)T at
each desired frequency. Modal synthesis methods which
combine modes and static corrections for loads, and possibly
viscoelastic loads [14], are thus preferred here.

To analyze damping, one will seek to compute poles
in the frequency domain (of the form Eq.(16)) which will
correspond to the classical computation of complex modes(

T T
[
K +

(
λ j (κcx)

)2
M

]
T
) {
ψ j (κcx)

}
= 0. (23)

and use an expression of the 2D-DSFT of the form
Eq.(13).

3.2 Periodic solutions frequency domain:
WFE

Taking the point of view of a harmonic response in the
time domain, the equation of motion of a given slice k can be
written as ZLL(ω) ZLI ZLR

ZIL ZII ZIR

ZRL ZRI ZRR




qL(ω)
qI(ω)
qR(ω)

 =


FL(ω)

0
FR(ω)

 (24)

where it is possible [6] to distinguish states of sections{
q
F

}
k

and internal states qI which are entirely defined

by the second row of (24) (a step known as dynamic
condensation of the internal states). The remaining
equations can be reformulated as a transition matrix problem{

q
F

}
k+p

= [S ]p
{

q
F

}
k

(25)

where S is a linear operator so that its power is more
efficiently computed through diagonalization

[S (ω)]p =
∑

j

{
U j(ω)

}
(µ(ω))p

j

{
V j(ω)

}T
(26)
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in a series of propagating waves. The literature on WFE
methods [6, 7, 4, 8] addresses the proper way of computing
the eigenvalues and eigenvectors of the transition matrix
while properly accounting for symmetry properties resulting
in inverse eigenvalues for left and right going waves and
avoiding scaling issues associated with the different nature
of displacements and loads appearing in the state vector.

For the sake of the present paper, the key aspect is that
the response at a given slice is of the generic form

{u(n, ω)} =
∑

j

µ
p
j

{
u j(ω)

}
(27)

For the case of infinite structure with a point load at
position x = 0, a finite solution necessarily only has left
going waves (|µ j| > 1) on the left and right going waves
(|µ j| < 1) on on right. As a result, one actually has a solution
of the form

{u(n, ω)} =
∑

j

eα j |n|
{
u j(ω)

}
with α j = ln(µ j) (28)

whose Fourier/Floquet transform is given by

{u(κ, ω)} =
∑

j

u j(ω)(1 − µ2
j )(

1 − eα j(ω)−iκ) (1 − eα j(ω)+iκ) (29)

which clearly has the form(9).

4 Applications

4.1 Sample application with a bandgap:
simplified track model

In railway research, a widespread approach to get
dynamic information on the global track behavior is to
perform a receptance test [15]. That is to measure transfer
function between displacement under impact and force at the
rail level. This test characterizes the global behavior of track
for a range of frequencies and allows identifying the main
resonances of the structure. It characterizes the structure
sensitivity to vibrations [16] and the dynamic flexibility of
the track [17]. This test is frequently used in numerical
studies to adjust numerical model properties [18, 19, 20] or
give insights on the wave propagation in the substructure
layers, as used by [21] to assess soft soil influence.
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Figure 3: Receptance associated with an impact on the rail.

The Fourier transform of the forced response of the
railway track modeled as displayed in Figure 1 in the
wavenumber / frequency domain is shown in Figure 4.
The black-lines indicate the values of frequencies found by

Figure 5: Finite length modes associated with points A,B,C

computation of an elastic dispersion diagram. The main low
frequency peak, point A of Figure 3, at 15 Hz is associated
with the track resonance on the soil. The associated
modeshape is shown for a two rail track in Figure 5a. The
second feature, point B of the receptance is found near 290
Hz. The nearest periodic mode, shown in 5b corresponds to
an alternating motion of adjacent sleepers leading to very
small motion of the rail. This is a classical bandgap since
no possible periodic mode frequency exists until point C,
which corresponds to a resonance of the rail on the pads, as
displayed in 5c with little motion of the sleepers. Finally the
so called pin-pin mode occurs near 1400 Hz and corresponds
to the frequency at which the wave propagation in the rail
gets aliased. At that frequency the rail has opposite phases
for adjacent sleepers.

Figure 4: Amplitude of the forced response of a periodic
track in the wavenumber/frequency domain.

These four characteristic points are classical features of
railway track receptance as stated by [16].

Finally an important objective of this study was to
analyze the relation between attenuation along the track and
damping. To properly analyze the result in relation with
the previous responses, rather than classically presenting
the real and imaginary parts of α j, the choice is made here
to represent the frequency and wave number and use color
coding to display in Figure 6 the evanescence ratio as a value
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between 0 (fully dissipative) and 1 (purely propagative).
The chosen colormap emphasizes the propagating modes
with peaks visible in 2D transfer Figure 4, corresponding
to waves with a small evanescence ratio. It also illustrates
that evanescence depends on the group velocity estimated
by ∂ω j/∂k.

Figure 6: Track attenuation as a function of frequency and
wave number.

4.2 Honeycomb panel
Now considering the case of a honeycomb panel, one

is interested in understanding propagation of in-plane
”membrane modes” in the skins (often referred to as the
S0 waves in the Lamb wave literature). The base cell
shown in Figure 1 is modeled using 556 quadratic volume
elements for 11000 DOF including 1350 interface nodes
making the cost of WFE approaches significant. To focus on
in-plane waves a symmetric in-plane loading of the top and
bottom skins is applied and the transfer function to the mean
in-plane response on the two skins is shown in Figure 7.

The black lines on the plot show the dispersion diagram
clearly show the high number of propagating waves.
Bending, indicated as point (a), occurs first but is not
excited by the considered load and thus does not lead to
peak in the 2D-DSFT transfer. A large number of slowly
propagating wall bending modes, point (b) for example,
occur at relatively low frequencies due to the small thickness
of the honeycomb walls.

Figure 7: Transfer associated with an in plane load in the
frequency-wavenumber domain.

The in-plane wave of interest is indicated by point (c) and

its evolution with frequency is clearly indicated by the peak
of the transfer function. The second mode propagating with
the same group velocity is the anti-symmetric in-plane mode
(d). An interesting feature of this response is the existence
of a band-gap between 33 and 40 kHz. As for the track
model, this gap is associated with distributed resonating
substructures which here correspond to the honeycomb wall
bending.

a) b)

c) d)

Figure 8: Sample wave shapes. a) bending mode, b) first
wall bending, c) symmetric in-plane compression, d)

anti-symmetric in-plane compression

5 Conclusion
The paper proposed to analyze the forced response of

periodic structures using a 2D Fourier transform using
continuous time and discrete space. The simple example
of compression waves was used to show that this response
could be used to define poles in the wavenumber domain
corresponding to evanescent waves or poles in the frequency
domain corresponding to damped periodic modes. Link with
classical computational methods based on FEM models of
cells was done for both the periodic solution and wave based
approach.

Two examples were analyzed in more detail: a simple
train track model exhibiting a band-gap and the more
complex case of a honeycomb panel where cell walls
bending occurs within the band of interest. Damping could
be analyzed both in terms of modal damping and wave
evanescence with the effect of group velocity needing to be
analyzed further. Other ongoing work is related to model
reduction in the periodic approach allowing later use of
WFE or transients as in [11].
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em linhas ferroviarias em alta velocidade: Analise
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