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Abstract

The main objective of this paper is to present an innovative numerical tool to represent
the track and platform dynamic behavior under passing trains. Dynavoie is currently
being developed for engineering purposes at SNCF. It is specifically designed to cor-
rectly reproduce the track and platform dynamic behaviors in the time domain. This
model is based on the Finite Element Method (FEM), adapted to the railway track
using model reduction techniques. Taking advantage of the periodicity of the track
introduced by the regular sleeper spacing, one or several basic slices containing all the
geometric properties of the structure can be identified. Static and periodic responses
of these slices are computed. Then, reduction is performed using these deformations.
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Thus the number of degrees of freedom of the model is highly reduced. This reduction
induces a decrease in computation time with limited accuracy loss in the representa-
tion of track dynamics. The methodology will be further described in this paper. The
second novelty of this work is to use this model to analyze the dynamic behavior of a
transition zone located in a French high speed line.

Keywords: Railway track, modeling, dynamic, transition zone, High Speed Line.

1 Introduction

The French High Speed line network has developed for more than 30 years mainly
on analytical and semi-empirical basis regarding track and platform conception. Cur-
rently, more than 30000 km of lines are operated in France among which 2000 km of
HS lines. The French railway network can be seen as a laboratory to experiment new
track designs: under sleeper pads (USP), soft rail pads, bituminous layer [1]... Oth-
erwise to assess the mechanical performance of the infrastructure from the dynamic
point of view, numerical models are of great interest [2]. In addition to feedback,
models are also useful in areas presenting unexpected behavior (such as ballast layer
dynamic instability, hanging sleepers, differential settlement,etc.) in order to diagnose
the track and to recommend adapted solutions . To design specific solution [3, 4] or to
assess the dynamic behavior of tracks, many models have been proposed [5, 6, 7, 8, 9].
A first category among the cited models [6, 8], uses a full 3D Finite Element (FE)
model of track. Geometry of the track can then be correctly modeled, taking into
account changes in materials or geometric discontinuities, but time computations can
reach several days of calculation as reported in both papers. A second category of
models [5, 7, 9], are based on a 2.5D FEM/BEM modeling of the track. Calcula-
tions are made on an uniform section of the track which is considered as invariant
in the longitudinal direction. This hypothesis allows to highly reducing the memory
required by modeling, but implies difficulties to represent geometric discontinuities or
longitudinal change in material properties.

The model used in this paper, Dynavoie, is a hybrid approach between these two
categories. The modeling characteristics are close to the ones proposed by [10] who
models track as composed of periodic cells and perform a Floquet transform in the
basic cell. An additional reduction step is proposed in this paper.

Dynavoie is currently being developed for engineering purposes at SNCF. This nu-
merical model is specifically designed to correctly reproduce the track and platform
dynamic behaviors in the time domain. This model is based on the Finite Element
Method (FEM) plus model reduction techniques that are used to reduce the number of
degrees of freedom. This reduction decreases computation time and memory require-
ments with limited accuracy loss in the representation of track dynamics.

Dynavoie methodology is described in this paper. Then, a specific area of the
French railway network is chosen. First, a brief analysis based on experimental mea-
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surements is proposed. Then Dynavoie is used to model this area and provides further
understanding of the track behavior.

2 Dynavoie Method

Numerical simulation of railway tracks by usual Finite Element Method can be time
and resource consuming. Dynavoie aims at proposing a simulation of railway track
dynamics in a short amount of time and of storage required by using Ritz reduction
based on a substructuring technique. The method used in this work is based on the
geometric pseudo-periodicity of the track. In the context of model reduction, the
challenge is to consider pertinent deformations to chose accurate reduced Degrees of
Freedom (DOFs).The following sections detail these choices and the corresponding
calculation steps.

2.1 Reduction method

Railway track can be considered as periodic following sleepers. Every slice includes
one sleeper, so spatial periodicity is equal to sleeper spacing, ∆x = 60cm in France.
The global track can be generated by translations following x of the basic slice.

On a slice N , displacements at the degrees of freedom of the mesh
{
qN
}

are de-
composed as following: {

qN
}

=
{
qNl qNc qNrail qNr

}T (1)

qNl are DOFs of the left interface of the sliceN , qNr are the DOFs of the right interface,
qNrail are DOFs corresponding to the top of the rail (see Figure 2) and qNc are the DOFs
corresponding to the center of the slice (all the DOFs that are not in other categories).

This separation of DOFs is useful to ensure that solution found using the reduction
basis is kinematically admissible (continuity of displacement between adjacent slices).

First step is to find a reduction basis [T] giving

{q} ' [T] {qR} , (2)

with {q} =
{
q1 · · · qN

}
and {qR} =

{
q1
R · · · qNR

}
, {qR} being the

displacement in the reduced model.
A representation of matrix [T] is proposed in Figure 1 for a model of three slices.

Colored blocks stand for non-zero terms and colored points for DOFs.
This matrix has been indexed by block, following:

• Columns are the number of the slice considered

• Line 1 (red) represents slice 1 without right its interface.

• Line 2 (blue) represents slice 1 right interface and slice 2 left interface.
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Figure 1: Representation of the reduction matrix [T]
.

Figure 2: Degrees of freedom corresponding to the top of the rail
.

• Line 3 (green) represents slice 2 without its interfaces left and right.

• Line 4 (gray) represents slice 2 right interface and slice 3 left interface.

• Line 5 (orange) is the third and last slice without its left interface.

One of the key principles of Ritz reduction is that if the solution belongs to the
considered subspace, then it will be exactly recovered solving the reduced problem.
Two meaningful families of solutions in dynamic study of railway tracks under passing
trains are static response under fix loading and wave propagation along track [11, 12,
13].

This is why periodic solutions to these two problems will be used to build the
reduction basis.

2.2 Periodic solutions

The conventions used in this work regarding Fourier transform are fully described in
[14].
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Knowing the Fourier transform U of a real-valued field , u is recovered computing
the inverse Fourier transform given by

u(n∆x) =
1

2π

∫ π

0

2(Re(U(κcx)) cos(nκcx)

−Im(U(κcx)) sin(nκcx))dκcx (3)

Using Equation (3) displacement of the periodic track structure with N slices can
be written as:

{q(x)} =


q1(∆x)
q2(2∆x)

...
qN(N∆x)

 =



∫ π
0

(
Re(Qκcx(∆x)) cos(κcx)− Im(Qκcx(∆x)) sin(κcx)

)
dκcx∫ π

0
(Re(Qκcx(∆x)) cos(2κcx)− Im(Qκcx(∆x)) sin(2κcx)) dκcx

...∫ π
0

(Re(Qκcx(∆x)) cos(Nκcx)− Im(Qκcx(∆x)) sin(Nκcx)) dκcx


(4)

Approximation of this integral is made by discretization on wavenumbers, taking
evenly spaced values of κcx in the [0 π] interval, so κcx = 2π/n with n ∈ [0 N ]. So
Equation (4) can be written

{q(x)}N×1 = [E]N×2N {Q0}2N×1 (5)

with:

[E]N×2N =



cos(1 · 2π) − sin(1 · 2π) . . . cos
(

1·2π
N

)
− sin

(
1·2π
N

)
cos(2 · 2π) − sin(2 · 2π) . . . cos

(
2·2π
N

)
sin
(

2·2π
N

)
...

... . . .
...

...
cos(N · 2π) − sin(N · 2π) . . . cos

(
N ·2π
N

)
− sin

(
N ·2π
N

)



and {Q0}2N×1 =



R(Qκ1(∆x))
I(Qκ1(∆x))
R(Qκ2(∆x))
I(Qκ2(∆x))

. . .
R(QκN (∆x))
I(QκN (∆x))


2N×1

The result of Fourier transform is a symmetric spectrum. The terms in the second
half of {Q0} are conjugates of the first half ones. It is then possible to write a bijective

5



matrix [E]N×N linking independently solutions in space domain {q} and in the Fourier
domain{Q}.

The general problem to solve in order to find periodic modes is

[M]N×N {q̈(t)}N×1 + [K]N×N {q(t)} = 0 (6)

As global geometry of the track is periodic, dynamic stiffness of the structure is
block diagonal and can be written as a function of the stiffness of the first slice [Z1]:

[Z]N×N =


[Z1] 0 · · · 0

0 [Z1] · · · 0
· · · · · · · · · · · ·
0 0 · · · [Z1]

 (7)

At this point, damping matrix is not taken into account, it will be determined at the
end of the reduction process. Dynamic stiffness matrix of the slice is then defined as
[Z1] = [M1]− ω2 [K1]

The problem to solve, using Equation (5) is then [E]T [Z] [E] {Q0} = {F}. As
[E]T [Z] [E] is a block diagonal matrix, the resolution for the structure can be reduced
to a resolution in the reference slice following:

[
[K1]− ω2 [M1] 0

0 [K1]− ω2 [M1]

]{
Re(Qκn(∆x))
Im(Qκn(∆x))

}
=

{
Re(Fκn)
Im(Fκn)

}
(8)

To compute static modes (corresponding to ω = 0 in Equation (8)), 5 values of
wavenumber are chosen, evenly spaced in the [0, π] interval. These values are labeled
κsi, with i = 1 to 5). For each one of these values the following equation is solved:[

[K1] 0
0 [K1]

]{
Re(Qκsi(∆x)
Im(Qκsi(∆x)

}
=

{
Re(Fκsi)
Im(Fκsi)

}
(9)

The subspace linked to static deformation is then:

[Tstat] =
[

Re(Qκs1(∆x)) Im(Qκs1(∆x)) · · · Re(Qκs5(∆x)) Im(Qκs5(∆x))
]

(10)
To build the subspace of periodic modes, an additional condition to take into ac-

count is the continuity of displacement at slices interfaces. To do so, for a given slice
numbered n, two observation matrices are defined: [cn

l ] for the DOFs of the left inter-
face and [cn

r ] for the DOFs of the right interface. Following notations of Equation (1),
they are defined as:

{qn
l } = [cn

l ] {qs}
{qn

r } = [cn
r ] {qs} (11)

The continuity of displacement between adjacent slices can be expressed as {qn
r } ={

qn+1
l

}
. If slices are identically meshed, then [cl] and[cr] are the same for all slices.
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Continuity condition can be expressed as (see [14] for more details):

[cr] {Q0} = [cl] {Q0} ei 2π
n (12)

This equation is a periodicity of the second kind [15], and reflects the reproduction of
harmonics after a wavelength n∆x. In Dynavoie, two periodicity lengths are consid-
ered: n = 5 and n = 50.

For each one of these values, the following equation is solved:[
[K1]− ω2 [M1] 0

0 [K1]− ω2 [M1]

]{
Re(Qκn(∆x))
Im(Qκn(∆x))

}
= 0 (13)

A maximal frequency of interest fmax = 100Hz is defined, and only eigen modes
verifying the condition f < fmax are selected to build the subspace, nmp is the number
of modes satisfying this condition. This condition determines the areas of validity of
the model.

The subspace of periodic modes is then:

[Tdyn] =
[

Re(Qκn(∆x))N×nmp Im(Qκn(∆x))N×nmp
]

(14)

2.3 Building of the basis

At this stage, there is no reason for the subspace [T1] =
[
Tstat Tdyn

]
to be a basis.

Some vectors of [T1] can be collinear. To transform [T1] in an orthogonal basis with
respect to mass and stiffness matrices, the following conditions are specified:

1. [T1]T [M] [T1] = [I]

2. [T1]T [K] [T1] = diag
[
ω2
j

]
Then, modeshapes linked to the deformation of the rail are added to [T1]. This sub-
space is labelled [Trail]. The global reduction basis of the system is then:

[T] =
[
T1 Trail

]
(15)

2.4 Continuity of displacement

The reduction basis [T1] describes the deformation of a slice without considering the
continuity with adjacent slices. Deformation on the left and right interfaces of the slice
can be different, so slices cannot be assembled directly to form the track. In order to
add this continuity condition, the basis [T1] is decomposed as following:

ql
qc
qrail
qr

 =
[
Tl Tc Trail Tr

]
qRl
qRc
qRrail
qRr

 (16)
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Figure 3: Visualisation of two slices of the track, numbered N and N + 1.

The following conditions are imposed:

• Non zero displacement on the left are generated with Tl. So [cl]
[
Tc Trail Tr

]
=

0

• Non zero displacement on the right are generated with Tr. So [cr]
[
Tc Trail Tr

]
=

0

• Traces equals on the left and on the right for Tl and for Tr: [cl] [Tl] = [cr] [Tr]

• Then the last condition is direct continuity of displacement in the reduced sub-
space

{
qRN
r

}
=
{

q
R(N+1)
l

}
.

Various numerical strategies to build a basis following these four conditions exist
and are not detailed here.

2.5 Damping matrix

Until this stage, no damping has been taken into account. The reduction base has been
built taking into account only mass and stiffness matrices. The damping matrix [C]
is built in Dynavoie after the reduction stage. This matrix considers both hysteretic
damping of each material (intern damping) and structural damping (damping due to
interfaces), using a complex stiffness matrix [K] and loss factor for each element.

Then, the dynamic stiffness matrix can be written as follow

[Z(s)] = [K] + s [C] + s2 [M] (17)

with s = iw. An estimation of the dynamic stiffness matrix is given by[
Ẑ(s)

]
' [K] + i [B(ηm)] + s2 [M] (18)
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where [B] is a hysteretic damping matrix that includes loss factors ηm of each material:

[B] =
∑
m

ηmKm (19)

with m representing each material of the model.
The dynamic stiffness is then[

Ẑ(s)
]

=
∑
m

((1 + iηm) · [Km]) + s2 [M] (20)

The periodic modes {Φj} are solutions on a slice of(
[Kslice]− ω2

j [Mslice]
)
{Φj} = 0 (21)

Performing orthogonalization with mass and stiffness matrices leads to

[Φj]
T [M] [Φj] = [I] (22.1)

[Φj]
T [K] [Φj] =diag

[
ω2
]

(22.2)

Then, the viscous damping matrix of the system is [Γ] defined as

[Γ] = [Φj]
T [C] [Φj] , (23)

which leads for a unique slice to

[Φj]
T [Zslice] [Φj] = s2 [I] + s [Γ] + diag

[
ω2
j

]
. (24)

Combining Equation (17) and Equation (18), damping is given by [B] ' ω [C], which
leads using (23) to

ω [Γ] ' [Φj]
T [B] [Φj] = [BR] , (25)

so

[Γij] =

{
1
√
ωi

}
·
[
BRij

]
·
[

1
√
ωj

]
. (26)

For all j:

• Γjj · ωjR = ΦT
jR ·B · ΦjR

• Γjj = 2 · ξj · ωj

The damping coefficient ξj for each mode {Φj} in the reduction base [T] can be
given by

ξj =
1

2ω2
j

ΦT
j

(∑
m

ηmKm

)
Φj. (27)

According to [16], with the orthogonality condition to the mass matrix 22.1 verified
the following relations can be written:
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(
[Φ]T [M]

)
[Φ] = [Φ]T ([M] [Φ]) = [I] = [Φ]

(
[Φ]T [M]

)
= ([M] [Φ]) [Φ]T (28)

Finally, by putting aside matrix [C] in Equation (23), and using [Φ]−1 = [Φ]T [M]
and [Φ]T−1 = [M] [Φ] (Equation (28)), the viscous damping matrix on physical coor-
dinates is expressed as

[C] = [M] [Φ] [Γ] [Φ]T [M] (29)

2.6 Building of the track

For each individual slice, the problem to solve is given by

[MR] {q̈R(t)}+ [CR] {q̇R(t)}+ [KR] {qR(t)} = [T]T {f(t)} (30)

with [MR], [CR] and [KR] respectively the mass, damping and stiffness reduced
matrices. These matrices are square, diagonals and their dimension is NR ×NR.

Dynavoie then assembles the slices to build the full 3D model
ZR 0 · · · 0
0 ZR · · · 0
...

... . . . ...
0 0 · · · ZR



qR1

qR2
...

qRN

 = [T]T {f(x(t), t)} (31)

with [ZR] = s2 [MR] + s [CR] + [KR].
Equation (31) allows to compute reduced displacement {qRi} with i ∈ [1, N ].

Then, with {q} = [T] {qR} the displacement field {q} on the physical DOFs can be
computed.

2.7 Numerical performance

The final purpose of Dynavoie is to reduce time computation and storage compared
to a full 3D FEM. This objective is achieved: Dynavoie divides by 100 the number of
degrees of freedom of the model compared to a full 3D FEM. For example, to model
60 m of track with quadratic elements requires 4 million DOF in 3D full FE, and only
30000 with Dynavoie. Computing 11 000 time steps in this configuration takes 30
minutes with Dynavoie, several days with a full 3D FEM.

3 Test site and experimental results

In this section, a transition zone, that is modeled using Dynavoie in section 4, is pre-
sented and experimental results are briefly described.
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Figure 4: Description of Chauconin test site (adapted from [17]).

3.1 Test site

The chosen area is located in the French High Speed Line between Paris and Stras-
bourg and presents a transition between ballasted and slab track as displayed in Figure
4. Only the part with a ballast layer is studied in this work, but slab track could also
be modeled with Dynavoie.

There are three different ballasted track designs in this zone:

• The ballasted track with properties of a conventional high speed design.

• The transition zone with mat 2 that provides the transition of geometry for the
substructure between ballasted track and slab track. In the substructure, the
compacted standard granular material layer is replaced by cement bound granu-
lar material. Between ballast and subgrade a polyurethane mat is introduced to
provide the stiffness transition between slab track and ballasted track.

• The transition zone with mat 1 has the same characteristics as the first part of
the transition, except for the ballast mat which is softer than in the previous area
to progressively reach the slab track stiffness.

3.2 Quasi-static measurements

The first series of measurement in this area is EMW quasi-static rail deflection mea-
surement [18]. This train belongs to CFF (Chemins de Fers Fédéraux Suisses) and
measures axial deflection of the rail under a load of 20 t at a speed of 15 km/h.

Stiffness measurements have been performed in 2008 and 2011 on this specific
area. The results of measurements are presented in Figure 5 and average values by
areas are summed up in Table 1.

Conclusions are the following:

• Despite local irregularities in the track deflection, amplitudes varies mainly
when the substructure changes. In particular, deflection is twice as high in the
transition zone than in the ballasted track.
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Figure 5: EMW measurements in the transition zone in 2008 and 2011.

Ballasted Track TZ mat 2 TZ mat 1 Slab Track
2008 -0.55 -1.51 -2.32 -1.53
2011 -0.50 -1.46 -2.05 -1.37

Table 1: Mean values of quasi-static displacement under 20 t measured by EMW in
2008 and in 2011

• The difference of properties between the two mats in the two areas of the tran-
sition is also visible: deflection is higher in zone with mat 1 than in zone with
mat 2. This deflection change is due to the mat as it is the only difference in the
track structures between the two areas.

• Much higher displacement is shown at the approach of the slab in 2008 and
2011, and between the ballasted track and the transition zone in 2011, which is
characteristic of hanging sleepers that have been observed.

These measures reveal that static dimensioning of the track is not optimized as
deflection change is not progressive from the ballasted track to the slab track. Hanging
sleepers are due to ballast differential settlement [19] and according to [20], ballast
settlement is mainly due to acceleration level on sleepers. A further step is to look at
dynamic response of this transition zone.

3.3 Dynamic measurements

Two sets of dynamic measurements are performed in addition. The first are measure-
ments of rail displacement under hammer impacts at the top of the rail. This gives

12
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Figure 6: Direct receptance measured on ballasted track (in blue), on transition zone
with mat 2 (green curve) and on transition zone with mat 1 (red curve) and corre-
sponding coherence.

L [m] f [Hz]
Length of a car 18.7 3.42

Distance between two boggies 6.3 10.14
Distance between two axles 3 21.29
Distance between sleepers 0.6 106.48

Table 2: Values of characteristic length for a speed of 230 km/h.

access to the transfer function (receptance) of the track in the frequency domain. The
experimental setup is fully described in [21], only results are provided here in Figure
6.

The two curves corresponding to the transition zone are more flexible at low fre-
quencies than the ballasted track. On the contrary, for frequencies higher than 40 Hz,
transition zone is stiffer than the ballasted track. The change of mat between the two
curves of the transition zone is also clearly visible. In the previous part, the transition
with mat 1 was shown more flexible than the one with mat 2 for quasi static measure-
ments. Receptance test shows that this result is also valid for higher frequencies.

The second type of dynamic measures is acceleration of sleepers under the passing
of trains. Commercial speed in this area is 230 km/h. This measuring campaign
was fully described in [17]. Figure 7 shows power spectral density computed on 50
passages of simple unit TGVs.

Vertical lines in this Figure correspond to frequency linked to characteristic geo-
metric lengths of the system, that are recalled in table 2, and their harmonics.

For the three zones, the peak of greatest amplitude is at 21 Hz and corresponds to
distance between axles. Peaks corresponding to other characteristic lengths are also
visible. Amplitude for the main peak is 3.5 times higher in transition zone with mat
2 than in the ballasted track, and 4.5 times higher in transition zone with mat 1. For
its first harmonic at 42 Hz, this difference is even higher: amplitude is more than ten
times superior in both areas of the transition than in the current ballasted track. On the
contrary, the peak at 106 Hz linked to sleeper spacing gives birth to peaks with barely
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Figure 7: Power spectral density of acceleration measured on sleepers for a mean of
50 train passages.

the same amplitudes in every areas.
These observations have to be compared to the receptance measurement. Accord-

ing to [22], receptance shows the flexibility of the track. As below 50 Hz, receptance
curves are above the ballasted track. Then, it is not surprising that acceleration oc-
curring below 50 Hz are amplified in the transition zone. To explain this difference
between the structures, the transition zone is modeled with Dynavoie.

4 Modeling of the transition

All layers are considered as linear elastic with properties summarized in Table 3. Ge-
ometry is the one of Figure 4, and a section of the ballasted track is detailed in 8.

Three different meshes are used to respectively model the ballasted track, the tran-
sition zone with mat 1 and the transition zone with mat 2.

To identify soil parameters, geological investigations performed before the line
construction are used. These investigations revealed that the soil is composed of two
layers: the first one of clay which is 3.8m high above a limestone marl layer. To reduce
boundary effects on soil, a gradient law for elastic modulus is considered:

E = E0

(
Psup + ρgz

P0

)n
. (32)

The coefficient n of Equation32 is set to 0.5, the target Young modulus value is 75
Mpa at 1 m depth in the first layer and a target value of 400 MPa at 1 m of depth in
the second and deepest soil layer are chosen.
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Table 3: Material properties
E ν ρ η

(MPa) (kg/m3)
Pad 50 0.3 828 0.2

Sleeper 30000 0.25 2400 0
Ballast 200 0.3 1700 0.07
Mat 1 0.59 0.3 900 0.1
Mat 2 0.82 0.3 900 0.1

Unbound granular material 180 0.35 2135 0.04
Cement bound granular material 23000 0.25 2000 0.04

Form layer 200 0.3 1800 0.04
Soil layer 1 Gradient 0.2 1800 0.2
Soil layer 2 Gradient 0.2 1800 0.2

5 Results

The Figure 9 shows the compared receptance for the ballasted track and the transition
zones. The combination of resonance followed by an antiresonance is a classical
characteristic of isolation systems. In case of the transition zone with mats, the top
layers (superstructure and ballast) are suspended above the mat. This suspension mode
is found at 40 Hz and appears as a peak in the receptance. Above the suspension mode,
the isolation starts to kick-in and the level drops below that of the nominal design
around 50 Hz. Around 60 Hz, the flexibility of the platform no longer has a small
effect and the isolation loses its efficiency leading to visible anti-resonance.

To confirm this analysis Figure 10 shows two cross-sections of displacement in the
transition zone with mat. The response at 19.9 Hz, before the resonance over the mat,
shows in phase motion of ballast and soil. The line of zero response, shown in white,
isolates an area at the edge of the track. At 50 Hz, after the resonance, the line of
zero response, occurs within the mat on the edge of the ballast and slightly below at
the center of the track. Thus the expected phase opposition between ballast and soil
motion is shown, which is characteristic of the isolation.

Now, calculation can be made in the time domain to see how the ballasted layer is
influenced by this resonance. To do so, ballasted track and transition zone with mat
2 are modeled in one unique model. This implies considering two basic slices for the
reduction part, and computing periodic and static deformation in both of them. Time
computation is made for two moving loads, spaced by 3 m (to represent the spacing of
axles in a boggie). Specific analysis is made on the ballast layer as ballast has shown
premature degradation in this area. Acceleration field in this layer is presented on
Figure 11 for three positions of the loads: on the ballasted track, on the transition zone
and between the two of them.

The first conclusion from this figure is that acceleration is twice as important in the
transition zone than in the ballasted track for the ballast layer. Another feature that
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Figure 8: Section of the ballasted track

appears looking at these fields is that acceleration is more concentrated under sleepers
in the transition zone. These two conclusions are elements that can explain uneven
degradation of this layer while passing from ballasted track to transition zone, as well
as in the transition zone itself.

6 Conclusion

A numerical tool, Dynavoie, able to model railway track, has been proposed and ex-
plained in this paper. Its final purpose is to quickly and correctly reproduce dynamic
behavior of track and platform. The strategy lies on a periodic sub-structuring of the
domain. Then, static and periodic modes representative of the track movement are
computed and used to build a reduction basis. Using this basis allows to highly reduce
the number of DOFs to consider, which reduces time computations and the memory
required for models.

The case study presented is a transition zone between ballasted track and slab track
on a French HSL. Experimental results show that viewed from the superstructure, both
static and dynamic responses of the track are very different between ballasted track an
the transition zone. Modeling the track reveals the existance of a resonance over the
mat in the transition zone at 40 Hz. In the time domain simulation, this resonance
provokes higher accelerations in the ballast layer for the transition zone.
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Figure 9: Computed receptance function for ballasted track (blue) and transition zone
(in green with mat 2, in red with mat 1) in Chauconin test site.

(a) TZ before resonance (b) TZ after resonance

Figure 10: Cross section of TZ displacement. White line corresponds to zero response.
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[3] J. Barbosa, P. Alves Costa, R. Calçada, Abatement of railway induced vibrations:
Numerical comparison of trench solutions, Engineering Analysis with Boundary
Elementsdoi:10.1016/j.enganabound.2014.11.029.

[4] M. Shahraki, C. Warnakulasooriya, K. J. Witt, Numerical Study of Transition
Zone Between Ballasted and Ballastless Railway Track, Transportation Geotech-

17



(a) Loads on the ballasted track

(b) One load on the ballasted track, another one on the transition zone

(c) Loads on the transition zone

Figure 11: Acceleration field on the ballast layer filtered between 1 Hz and 40 Hz

18



nicsdoi:10.1016/j.trgeo.2015.05.001.
[5] S. François, M. Schevenels, P. Galvı́n, G. Lombaert, G. Degrande, A 2.5D

coupled FE/BE methodology for the dynamic interaction between longitu-
dinally invariant structures and a layered halfspace, Computer Methods in
Applied Mechanics and Engineering 199 (23 - 24) (2010) 1536 – 1548.
doi:http://dx.doi.org/10.1016/j.cma.2010.01.001.

[6] S. Ju, H. Li, Dynamic interaction analysis of trains moving on embankments dur-
ing earthquakes, Journal of Sound and Vibration 330 (22) (2011) 5322 – 5332.

[7] N. Triepaischajonsak, D. Thompson, A hybrid modelling approach for predicting
ground vibration from trains, Journal of Sound and Vibration

[8] G. Kouroussis, L. Van Parys, C. Conti, O. Verlinden, Using three-dimensional
finite element analysis in time domain to model railway-induced ground vibra-
tions, Advances in Engineering Software 70 (2014) 63–76.

[9] X. Bian, H. Jiang, C. Chang, J. Hu, Y. Chen, Track and ground vibrations gener-
ated by high-speed train running on ballastless railway with excitation of vertical
track irregularities, Soil Dynamics and Earthquake Engineering

[10] H. Chebli, D. Clouteau, L. Schmitt, Dynamic response of high-speed ballasted
railway tracks: 3D periodic model and in situ measurements, Soil Dynamics and
Earthquake Engineering 28 (2) (2008) 118 – 131.

[11] L. Auersch, The excitation of ground vibration by rail traffic: theory of vehi-
cletracksoil interaction and measurements on high-speed lines, Journal of Sound
and Vibration 284 (1-2) (2005) 103–132.

[12] G. Lombaert, G. Degrande, Ground-borne vibration due to static and dynamic
axle loads of InterCity and high-speed trains, Journal of Sound and Vibration
319 (3-5) (2009) 1036–1066.

[13] D. Connolly, P. Alves Costa, G. Kouroussis, P. Galvin, P. Woodward,
O. Laghrouche, Large scale international testing of railway ground vibrations
across Europe, Soil Dynamics and Earthquake Engineering 71 (2015) 1–12.

[14] E. Arlaud, S. C. D. Aguiar, E. Balmes, A numerical tool to assess the dynamic
behaviour of different track designs, in: Railway Engineering, Edinburgh, 2015.

[15] D. Clouteau, M. Arnst, T. Al-Hussaini, G. Degrande, Freefield vibrations due to
dynamic loading on a tunnel embedded in a stratified medium, Journal of Sound
and Vibration 283 (1-2) (2005) 173–199.

[16] J. P. Bianchi, E. Balmes, G. Vermot des Roches, A. Bobillot, Using modal damp-
ing for full model transient analysis . Application to pantograph / catenary vibra-
tion ., in: Isma, 2010, pp. 1167–1180.

[17] S. Costa d’Aguiar, E. Arlaud, R. Potvin, E. Laurans, C. Funfschilling, Railway
Transitional Zones: A case History from Ballasted to Ballastless Track, Interna-
tional Journal of Railway Technology 2 (3).

[18] G. Sodati, Emw kiesen 2006 : Gleiseinsenkungen mit dem einsenkungsmesswa-
gen achslast 20 t,, Tech. rep., SBB-report (01/2007).

[19] S. Zhang, X. Xiao, Z. Wen, X. Jin, Effect of unsupported sleepers on wheel/rail
normal load, Soil Dynamics and Earthquake Engineering 28 (8) (2008) 662–673.

[20] A. Al Shaer, D. Duhamel, K. Sab, G. Foret, L. Schmitt, Experimental settlement

19



and dynamic behavior of a portion of ballasted railway track under high speed
trains, Journal of Sound and Vibration 316 (1-5) (2008) 211–233.

[21] E. Arlaud, S. C. D’Aguiar, E. Balmes, Dynamic behavior assessment of railway
track in the frequency domain: numerical and experimental approaches, (Sub-
mitted to) Soil Dynamics and Earthquake Engineering - (-) –.

[22] A. P. D. Man, Dynatrack: A survey of dynamic railway track properties and their
quality, Phd, Delft University (2002).

20


