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Abstract
Pantograph/catenary interaction is known to be strongly dependent on thestatic geometry of the catenary, this
research thus seeks to build a statistical model of this geometry. Sensitivity analyses provide a selection of
relevant parameters affecting the geometry. After correction for the dynamic nature of the measurement, pro-
vide a database of measurements. One then seeks to solve the statistical inverse problem using the maximum
entropy principle and the maximum likelihood method. Two methods of multivariate density estimations are
presented, the Gaussian kernel density estimation method and the Gaussian parametric method. The results
provide statistical information on the significant parameters and show that themessenger wire tension of the
catenary hides sources of variability that are not yet taken into accountin the model.

1 Introduction

Development of numerical models is a main focus of current research in pantograph-catenary interaction. As
shown in the benchmark led by S. Bruni [1], software modeling this interaction are becoming very accurate.
Simultaneous improvement of simulation speeds makes the use of parametric or statistical studies possible.

An important trend of studies performed at SNCF is to introduce variability into the deterministic parameters
in order to make the model more robust to the high variability of experimental conditions. Moreover, a
statistical approach is envisioned to allow revised maintenance policies which are known to usually be too
restrictive on the controlled parameters.

A study by RTRI [2] analyzed the static geometry of the contact wire and showed, as our study [3], that the
catenary geometry had a significant influence on current collection quality. The RTRI study highlights the
criteria on the geometry most relevant to identify installation error. This givesinformation on the kinds of
irregularities which significantly impact current collection quality, but does not give indications on which
part of the catenary is the source of these irregularities.

The current paper seeks to solve the inverse problem. From a set of measured contact wire heights, one
seeks to identify the probability distribution of influent parameters. After identifying sensitive parameters
that will be considered as random and correcting measurements to providea reference database for statistics,
the method to solve the inverse stochastic problem is exposed. The last section analyses the results.
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Figure 1: Parameters defining static geometry of a span

2 Case study

A catenary is divided into sections of about 1 km long. But every section isdifferent. The largest standard
structure of a catenary is thus a span, which for which one will seek to generate a statistical description.
The two most used types of spans in the French catenaries for high speedtrains are of 58.5m and 54m long,
respectively named N2 and N3 (N for nominal). N2 is used for statistics of thispaper, leaving the N3 for
future verifications of conclusions.

One will first perform a sensitivity analysis to select random parameters and clarify the procedure used to
obtain reference data from measurements.

2.1 Sensitivity analysis

Figure 1 illustrates the different parameters that can control the static geometry of the catenary (only tension
and gravity are applied). These parameters are described below:

• HCW,left andHCW,right are the height of the contact wire respectively at the left and right steady arm
of the span

• Hdrop,i is the height of the contact wire under theith dropper of the span

• ∆Hleft and∆Hright are the distance between the contact wire and the messenger wire respectively at
the left and right mast of the span

• Ldrop,i is the length of theith dropper of the span

• TCW andTMW are respectively the tensions in the contact wire (CW ) and in the messenger wire
(MW )

• The bending stiffness is negligible compared to the tensions applied in both cables and quick para-
metric studies have shown that a very large variation is needed to be able to see a variation on static
deflection.

Figure 2 shows the impact of a variation of±20% on the contact wire height. One observes that the variation
of TCW has a negligible impact compared to that created by the variation ofTMW . This is expected since
the conducting wire is mostly flat, while the messenger curvature is needed forto support the weight. In the
light of this result,TCW can be removed from the list of stochastic parameters.

Figure 3a shows the contact wire height in two conditions. The nominal casewith HCW,right = HCW,left =
508cm and a second configuration where the left mast has been raised of5cm, while retaining the contact
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Figure 2: Variation of±20% in TCW (left) and inTMW (right)

wire and the messenger wire is distance of140cm, and similarly the right mast has been lowered by5cm in
order to amplify the potential variation of the deflection. The deflection after projection on the line linking
the two steady arms, shown in 3b, is nearly identical in both cases. One can thus clearly say thatHCW,right

andHCW,left have no influence onCW deflection if∆Hright and∆Hleft do not change. Consequently,
these parameters will not be taken into account in the following.
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Finally figure 4 shows that∆H impacts the sag in a non-symmetric way. This parameter is thus retained.

After sensitivity analysis,11 parameters are retained and assumed independent: the9 dropper lengthsLdrop,i,
the messenger wire tensionTMW and the distance between the contact wire and the messenger wire at the
mast∆H.

2.2 Available measurements

The measurements used were obtained on the catenary between Paris and Strasbourg (LN6). The measuring
equipment is a pantograph keeping contact with the contact wire by applyinga vertical force on it of approx-
imately36N . The pantograph is fixed on a40km/h moving train. These experimental conditions appeared
to have a significant impact on the measured sag. The data were thus corrected through an iterative scheme
before which one built the model of each catenary on which the measure is complete, with the exact stagger
and distances between spans. The nominal height is then defined by usingdropper tables [4] and fixing
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contact wire height at steady arm to5.08m and height of contact wire at masts1.4m above. The process
applied is follows the steps shown in figure 5.
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Figure 5: Parameters defining static geometry of a span 2

One first computes the static sag of the nominal catenary model, then runs a dynamic simulation correspond-
ing to the measurement conditions, that is to say a pantograph applying a36N mean-force on a train going at
40km/h. From this dynamic simulation, one can get the uplift under the pantograph. This value is what the
equipment assumes to be the static sag, but should more appropriately be called dynamic sag. The difference
between the measured and simulated dynamic sags then gives an estimate of the geometry error. This gap
is assumed to be representative of the error on the static sag, so that one seeks to correct the static geometry
accordingly.

Obtaining a geometry that matches the target sag is an inverse static problem. The method applied here is to
let only dropper lengths vary. This leads to a well posed problem that hasa unique solution. The updated
geometry can then be used at stepn+ 1.

The convergence of the computation is controlled by getting the norm of the vector of the gap. In most cases,
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convergence is observed after2 iterations with a norm
√

∑

Gap2 < 1mm.

While using this method, two assumptions are made

• The bias corrected is significantly higher than the remaining measurement uncertainty and the model
uncertainty,

• The correction made only with dropper length variation leads to an equivalent solution as the one
which would have been found with the combination of all variations.

This second assumption can be verified by comparing the dynamic sag of two similar static sag obtained
by different ways. While settingTMW to 16kN for one model, one build another model with the same sag
with TMW = 20kN by modifying dropper lengths only. The figure 6 shows that the difference is lower
than2mm which is the order of magnitude of the measure resolution. Besides, one sees how important the
correction is by comparing the dynamic and static sag. This observation thus strengthens the first hypothesis
too.

For the database of measurements, a set of 117 N2-span deflections were obtained. Each had different heights
at masts but as seen in seen in section 2.1, height of the contact wire at masthas no impact on the deflection.
In order to remove these parameters from measurements, projections are done as in figure 3.

The reference data is thus a set ofνexp = 117 experimental observations(W obs,exp
i )1<=i<=νexp considered

as independent realizations of a random vector(W obs,exp
i ) of size 9.

3 Methods for stochastic inverse problem solving

In this section, one defines the methods chosen to solve the stochastic inverse problem. The global framework
used is explained in [5] and follows the steps detailed here.

The input parameters chosen in 2.1 are assembled in a random vectorX defined in (1). Each of them is
supposed an independent random scalar.

X = [(Ldrop,i)1<=i<=9, TMW ,∆H] (1)

One first defines a parametric distribution for each element ofX following the maximum entropy principle
(see [6]) to maximize the uncertainty on the available information. In this case, one only knows that lengths



and tensions cannot be negative. The maximum entropy method thus leads to the same gamma distribution
whose probability density function (p.d.f.) is given by

pX(x) =
xk−1 exp (−x/θ)

θkΓ(k)
(2)

with

Γ(k) =

∫

∞

0

e−xxk−1 dx (3)

In order to get more readable results and a good conditioning, these p.d.f.are characterized by their expec-
tations and standard deviations:

µ = kθ and σ =
√
kθ2 (4)

One then callss the vector of hyper-parameters, gathering together theµi andσi of each scalarXi fromX.

s is a 24-length vector whose initial values0 is set consistently with measurement magnitudes. This value
enables to get samples ofX of sizeNi generated by a specific sampling method, which is used to compute
the deflection of the contact wire.

Let W obs be the output random vector defined by thedW obs = 9 non independent heights of the contact
wire under droppers.

Four sample drawsXi,1<=i<=4 of X of sizeN1 = 103, N2 = 104, N3 = 105 andN4 = 106

were generated. As all marginal input distributions are supposed independent, the sampling method chosen
is the Latin Hypercube Sampling method (LHS). Once the 4 corresponding samplesW obs

i computed, the
distribution ofW obs is estimated using two different methods:

• Parametric estimation : one uses a gaussian distribution in order to representthe random vectorW obs.
This method displays a quick1/

√

N convergence but can introduce a bias if the parametric distribu-
tion chosen is not fitted

• Non-parametric estimation: one uses the multivariate gaussian kernel densityestimation method (called
KS for Kernel Smoothing). This method is slower with aN−1/(d

Wobs+4) convergence but does not
introduce any bias.

The theoretical convergence speed of the two methods is significantly different. For example, if one supposes
a mean deflection under the 5th dropper of -2.5cm with a standard deviation of 1cm (approximately the mag-
nitude observed), the estimation of the mean with a sample of size 1000 will have 95% of probability to be in
the interval[−2.438cm,−2.562cm]with the parametric estimation method and[−1.348cm,−3.652cm]
with the non-parametric estimation method. One thus wants to check if the bias introduced is important. To
this end, figure 7 compares the two methods for thei samples computed. On both figures, one sees that solid
lines (i.e. non-parametric estimation) get closer to the dashed lines (i.e. parametric estimation), which seems
to have already converged with a 1000-sized sample. Moreover, usings0 as initial hyper-parameters, the
output samples all succeed in the Henze-Zirkler’s multivariate normality test. One thus chooses to use the
parametric estimation method and verify if the result does still succeeds the normality test.

Callingpprior

W obs , the estimation of the output distributionW obs with selected hyper-parameterss, one com-
putes the likelihood

J(s) = ln(pprior

W obs(W
obs,exp
1 ; s) + ... + ln(pprior

W obs(W
obs,exp
νexp

; s). (5)

The maximum likelihood principle is an optimization problem given by

sopt = argmax J(s) (6)

In the implementation, the optimization is solved with the Nelder-Mead simplex algorithm available in the
num.py module of python.
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To summarize, one choses 11 independent gamma distributions for input parameters, which creates a vector
of hyper-parameters to be defined. One uses the LHS method to compute a sample of W obs which is
estimated by a Gaussian multivariate parametric method in order findsopt which maximizes the likelihood
of pprior

W obs regarding theνexp experimental observations(W obs,exp
i ).

4 Results

The statistical identification was motivated by the observation of the results obtained by the variation of
dropper lengths only. The first part of this section thus shows these observations and their limits, the next
analyses the final identification results.

4.1 Droppers only

When maintaining fixed every parameters but the dropper lengths, the inverse problem is well posed as
explained in section 2.2. The problem is thus quick to solve and results are obtained in a few minutes. The
117(W obs,exp

i ) thus lead to 117 sets ofLdrop,i on which statistical observation can be performed.

Table 1: Dropper length moments

H
H
H
H
H

s
X

Ldrop,1 Ldrop,2 Ldrop,3 Ldrop,4 Ldrop,5 Ldrop,6 Ldrop,7 Ldrop,8 Ldrop,9

µ − Lnom[cm] 0.64 -0.45 -0.68 -0.6 -0.34 -0.36 -0.08 0.19 0.95
σ[cm] 0.33 0.81 1.43 1.83 1.83 1.81 1.50 0.98 0.41

Table 1 shows that the expectation of dropper lengths is higher than the nominal value at the extremities and
lower in the center of the span with a gap of almost1cm for some cases. Moreover, the standard deviation
is very high at the center of the span and low at extremities.

Figure 8 displays the Pearson matrix correlation which shows a very strongcorrelation of almost 1 between
every droppers but those at the extremities. The high disparity of dropper lengths, the high gap between
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nominal length and expectations obtained, and the strong correlation between dropper lengths leads to the
conclusion that other parameters not taken into account have a non-negligible variability, which impacts the
contact wire deflection.

4.2 Statistical identification

Taking parameters discussed in section 2.1, the whole inverse stochastic problem is solved under python
with OpenTURNS [7] module while the static problem is solved by OSCAR[8] parallelized on 40 nodes.
Each single static computation lasts around 2s, which leads to an evaluation ofJ(s) in around 80s. One
converged to the result after 2300 iterations with 3300 evaluations ofJ(s) in 3 days.

A first optimization led to high mean values of dropper lengthsLdrop,i compensated by a high mean value
of TMW . These incoherent results have been solved by fixing the mean values ofLdrop,i which are the
only measured quantity during maintenance and consequently the most relevant quantity to maintain fixed.
The resultingsopt is displayed in Table 2

Table 2: Optimal statistical parameterssopt

H
H
H

H
H

s
X

TMW ∆H Ldrop,1 Ldrop,2 Ldrop,3 Ldrop,4 Ldrop,5 Ldrop,6 Ldrop,7 Ldrop,8 Ldrop,9

µ[SI] 20575 1.388 1.244 1.098 0.998 0.945 0.934 0.945 0.998 1.098 1.244
σ[SI] 818 0.0065 0.0067 0.0050 0.0045 0.0045 0.0038 0.0044 0.00350.0034 0.0070

Table 2 shows thatTMW has a standard deviation of around 818N, which is a very large value since this
tension is regulated by masses installed at the forward and after ends of thecatenary. One thus has to investi-
gate the reason of this large variation, which can be observed in a single catenary. An possible explanation is
the global shifting of the contact wire relatively to the messenger wire due to the creep or thermal expansion.
Figure 9 shows that a shifting of 2cm can induce a variation of deflection ashigh as an increase of 500N of
TMW .

While in the model taken, heights of the contact wire at the steady arms have been fixed in order to get the
chosen∆H, the real height is variable, but depends on several parameters. Forexample, the dropper lengths
of droppers close to the steady arm and the lengths of the two spans linked by the steady arm seem to have a
significant influence.∆H is thus not independent of someLdrop,i as one has supposed before. The model
could thus be improved taking into account this information.

During the manufacturing of droppers, the measurement accuracy on their length is1cm. TheLdrop,i found
thus have a coherent value of standard deviation of between3.4mm and7mm. One however observes a
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twice higher variation around the extremities of the span. This issue can be due to the link with∆H not taken
into account or to a bias induced by either measurement or model which havebeen mixed while correcting
measurements.

Figure 10 shows the confidence region in which the deflection has a98% of probability to be, considering
the input gamma distributions chosen with hyper-parameterssopt. One observes a large area which is mainly
due to the method applied to maximize uncertainty (maximum entropy principle).

5 Conclusion

This paper illustrated the possibility to use statistical inverse problems to characterize the distribution of
catenary geometries based on a few sensitive parameters. While the method was eventually found to be quite
efficient, the initial analysis ignored the key parameter of messenger wire tension and led to inconsistent
results. This highlights the importance of initial parameter choice and the presence of strong bias when this
choice is not properly made.

In the end, it appears global shifting of the contact wire relatively to the messenger would have an impact
similar to that of variations in the tension and that one should not ignore the correlation of certain parameters
like wire distance at mast and nearby dropper lengths.

Finally, a tighter confidence region, than that shown in figure 10, could beobtained by applying the Bayes



method to estimate the posterior probability distribution frompprior,opt

W obs = pprior

W obs(s
opt) [9, 5].

In the near future, this statistical geometric model will be used to generate random geometries and use them
as input for dynamic simulations, thus resulting in statistics on the pantograph contact force, which is the
key parameter of interest. Adjusting maintenance rules will be possible if a clear relation between statistics
on geometry and contact force can be obtained.
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