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Abstract

Pantograph/catenary interaction is known to be strongly dependent statitegeometry of the catenary, this
research thus seeks to build a statistical model of this geometry. Sensitigliysas provide a selection of
relevant parameters affecting the geometry. After correction for thardiginature of the measurement, pro-
vide a database of measurements. One then seeks to solve the statistisalpnogblem using the maximum
entropy principle and the maximum likelihood method. Two methods of multivariatsityeestimations are
presented, the Gaussian kernel density estimation method and the Gaasaiaetpc method. The results
provide statistical information on the significant parameters and show thatebsenger wire tension of the
catenary hides sources of variability that are not yet taken into acaothrg model.

1 Introduction

Development of numerical models is a main focus of current researcimiograph-catenary interaction. As
shown in the benchmark led by S. Bruni [1], software modeling this interaetie becoming very accurate.
Simultaneous improvement of simulation speeds makes the use of parametrttsticatatudies possible.

An important trend of studies performed at SNCF is to introduce variability irgaé&terministic parameters
in order to make the model more robust to the high variability of experimentalittmms. Moreover, a

statistical approach is envisioned to allow revised maintenance policies wieidtmewn to usually be too
restrictive on the controlled parameters.

A study by RTRI [2] analyzed the static geometry of the contact wire andiathoas our study [3], that the
catenary geometry had a significant influence on current collection quahigy RTRI study highlights the
criteria on the geometry most relevant to identify installation error. This gifesmation on the kinds of
irregularities which significantly impact current collection quality, but doesgive indications on which
part of the catenary is the source of these irregularities.

The current paper seeks to solve the inverse problem. From a set sfiredaontact wire heights, one
seeks to identify the probability distribution of influent parameters. Aftertifiéng sensitive parameters
that will be considered as random and correcting measurements to paodtirence database for statistics,
the method to solve the inverse stochastic problem is exposed. The last sectlgses the results.
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Figure 1: Parameters defining static geometry of a span

2 Case study

A catenary is divided into sections of about 1 km long. But every sectidiffexrent. The largest standard
structure of a catenary is thus a span, which for which one will seek tergena statistical description.
The two most used types of spans in the French catenaries for hightspesdare of 58.5m and 54m long,
respectively named N2 and N3 (N for nominal). N2 is used for statistics op#per, leaving the N3 for
future verifications of conclusions.

One will first perform a sensitivity analysis to select random parametet<harify the procedure used to
obtain reference data from measurements.

2.1 Sensitivity analysis

Figure 1 illustrates the different parameters that can control the static ¢yavhthe catenary (only tension
and gravity are applied). These parameters are described below:

o Heowere andHeow,igne @re the height of the contact wire respectively at the left and right piaad
of the span

e Hyop IS the height of the contact wire under tHe dropper of the span

o AH,.s andAH,;,, are the distance between the contact wire and the messenger wire respedti
the left and right mast of the span

® Lgrop,i is the length of the!” dropper of the span

e Tow and Ty are respectively the tensions in the contact witdl() and in the messenger wire
(MW)

e The bending stiffness is negligible compared to the tensions applied in bd#seaid quick para-
metric studies have shown that a very large variation is needed to be abke dovagation on static
deflection.

Figure 2 shows the impact of a variation-620% on the contact wire height. One observes that the variation
of Tew has a negligible impact compared to that created by the variati@ihf. This is expected since
the conducting wire is mostly flat, while the messenger curvature is neededdopport the weight. In the
light of this result, Ty, can be removed from the list of stochastic parameters.

Figure 3a shows the contact wire height in two conditions. The nominavaéseél vy, right = Howeft =
508cm and a second configuration where the left mast has been raigechofwhile retaining the contact
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Figure 2: Variation of=20% in Tow (left) and inT - (right)

wire and the messenger wire is distancé4cm, and similarly the right mast has been loweredhby: in
order to amplify the potential variation of the deflection. The deflection afgjegtion on the line linking
the two steady arms, shown in 3b, is nearly identical in both cases. Oneusadélarly say thatl cyy,.ign:
and How, s+ have no influence o'W deflection ifAH,;,;,, and AH. ¢, do not change. Consequently,
these parameters will not be taken into account in the following.
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Figure 3: Variation of+-5cm for Howepe and—5cem for How righs

Finally figure 4 shows thah H impacts the sag in a non-symmetric way. This parameter is thus retained.

After sensitivity analysisl 1 parameters are retained and assumed independeftdtbpper lengthd. 4,y ;.
the messenger wire tensidfy and the distance between the contact wire and the messenger wire at the
mastAH.

2.2 Available measurements

The measurements used were obtained on the catenary between Patiasinolugg (LN6). The measuring
equipment is a pantograph keeping contact with the contact wire by applyiedical force on it of approx-
imately 36 N. The pantograph is fixed ond@km /h moving train. These experimental conditions appeared
to have a significant impact on the measured sag. The data were thugewdtieough an iterative scheme
before which one built the model of each catenary on which the measuwmjgete, with the exact stagger
and distances between spans. The nominal height is then defined bydospmgr tables [4] and fixing
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contact wire height at steady arm id8m and height of contact wire at masitstim above. The process
applied is follows the steps shown in figure 5.
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Figure 5: Parameters defining static geometry of a span 2

One first computes the static sag of the nominal catenary model, then runaraidysimulation correspond-
ing to the measurement conditions, that is to say a pantograph appl$é7g mean-force on a train going at
40km/h. From this dynamic simulation, one can get the uplift under the pantograjghvalae is what the
equipment assumes to be the static sag, but should more appropriately belgadenic sag. The difference
between the measured and simulated dynamic sags then gives an estimateeoitle¢ryg error. This gap
is assumed to be representative of the error on the static sag, so thae@sdscorrect the static geometry
accordingly.

Obtaining a geometry that matches the target sag is an inverse static problemefitod applied here is to
let only dropper lengths vary. This leads to a well posed problem thaa lisque solution. The updated
geometry can then be used at step 1.

The convergence of the computation is controlled by getting the norm of thena the gap. In most cases,



— Satic Tvw

|-+~ static Droppers
511 —— Dynamic Ty

E - - - Dynamic Droppers
S 5.05| |
Q
T

5 B | | ]

380 400 420 440 460

Position [m]

Figure 6: Comparison of impact @ and Ly, ; on the dynamic correction applied

convergence is observed afeiterations with a norm/>" Gap? < 1mm.
While using this method, two assumptions are made

e The bias corrected is significantly higher than the remaining measuremeantainty and the model
uncertainty,

e The correction made only with dropper length variation leads to an equivedéution as the one
which would have been found with the combination of all variations.

This second assumption can be verified by comparing the dynamic sag ointilar static sag obtained
by different ways. While settin@’; to 165N for one model, one build another model with the same sag
with Ty = 20kN by modifying dropper lengths only. The figure 6 shows that the differdadower
than2mm which is the order of magnitude of the measure resolution. Besides, onb@gemportant the
correction is by comparing the dynamic and static sag. This observationttengtiens the first hypothesis
too.

For the database of measurements, a set of 117 N2-span deflectiersbtaned. Each had different heights
at masts but as seen in seen in section 2.1, height of the contact wire dtasast impact on the deflection.
In order to remove these parameters from measurements, projectiormaradgin figure 3.

The reference data is thus a setpf, = 117 experimental observatiomwfbs’“”)1<:Z-<:pr considered
as independent realizations of a random ve¢t¥"*“"?) of size 9.

3 Methods for stochastic inverse problem solving

In this section, one defines the methods chosen to solve the stochastie jpnadstem. The global framework
used is explained in [5] and follows the steps detailed here.

The input parameters chosen in 2.1 are assembled in a random »edefined in (1). Each of them is
supposed an independent random scalar.

X = [(Ldr0p7i)1<=i<=97 TMW, AH] (l)

One first defines a parametric distribution for each elemer¥ ébllowing the maximum entropy principle
(see [6]) to maximize the uncertainty on the available information. In this casepmly knows that lengths



and tensions cannot be negative. The maximum entropy method thus leadssoth gamma distribution

whose probability density function (p.d.f.) is given by

zF=Lexp (—x/0)
Ok (k)

px(x) = (2)

with -
I'(k) = / e Tzt ldx (3)
0

In order to get more readable results and a good conditioning, thesegreldharacterized by their expec-
tations and standard deviations:
p=ko and o= Vk6? 4)

One then calls the vector of hyper-parameters, gathering togethepitendo; of each scalaX; from X.

s is a 24-length vector whose initial valug is set consistently with measurement magnitudes. This value
enables to get samples &f of size IN; generated by a specific sampling method, which is used to compute
the deflection of the contact wire.

Let Wb be the output random vector defined by thg .. = 9 non independent heights of the contact
wire under droppers.

Four sample drawsX; 1 «—;<—4 Of X of size Ny = 103, N = 10%, N3 = 10° and N, = 10°
were generated. As all marginal input distributions are supposed indept the sampling method chosen
is the Latin Hypercube Sampling method (LHS). Once the 4 correspondinglemWfbs computed, the
distribution of WP is estimated using two different methods:

e Parametric estimation : one uses a gaussian distribution in order to regtessearidom vectow °%s,
This method displays a quidk/+/ N convergence but can introduce a bias if the parametric distribu-
tion chosen is not fitted

e Non-parametric estimation: one uses the multivariate gaussian kernel desisitgtion method (called
KS for Kernel Smoothing). This method is slower witt\a—1/(¢webs +4) convergence but does not
introduce any bias.

The theoretical convergence speed of the two methods is significantlsediffé-or example, if one supposes

a mean deflection under the 5th dropper of -2.5cm with a standard devidiomgapproximately the mag-
nitude observed), the estimation of the mean with a sample of size 1000 will B&vefQprobability to be in

the interval—2.438cm, —2.562cm] with the parametric estimation method grell.348cm, —3.652cm)]
with the non-parametric estimation method. One thus wants to check if the biasucgb important. To
this end, figure 7 compares the two methods forittemples computed. On both figures, one sees that solid
lines (i.e. non-parametric estimation) get closer to the dashed lines (i.e. pacasmation), which seems

to have already converged with a 1000-sized sample. Moreover, sgiag initial hyper-parameters, the
output samples all succeed in the Henze-Zirkler's multivariate normality tes. tlus chooses to use the
parametric estimation method and verify if the result does still succeeds timalitgrtest.

Calling p’;"/’.f,‘,’,:, the estimation of the output distributidi °®* with selected hyper-parametersone com-
putes the likelihood
J(s) = In(pLyt (WP oP; 5) + oo + In(phy o (WP 5). (5)

The maximum likelihood principle is an optimization problem given by

opt

sP" = arg max J(s) (6)

In the implementation, the optimization is solved with the Nelder-Mead simplex algoritaitable in the
num py module of python.
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To summarize, one choses 11 independent gamma distributions for inpatgtars, which creakea vector
of hyper-parameters to be defined. One uses the LHS method to computeke sd W°bs which is
estimated by a Gaussian multivariate parametric method in ordesffidvhich maximizes the likelihood

of p@;ﬁ’; regarding theve.;, experimental observatio(3V’ ?bs’e“’ ).

4 Results

The statistical identification was motivated by the observation of the resultsyeddthy the variation of
dropper lengths only. The first part of this section thus shows thesa®ns and their limits, the next
analyses the final identification results.

4.1 Droppers only

When maintaining fixed every parameters but the dropper lengths, thesenpeoblem is well posed as
explained in section 2.2. The problem is thus quick to solve and results ti@edhin a few minutes. The
117 (W?bs’em” ) thus lead to 117 sets d4,.op,; ON Which statistical observation can be performed.

Table 1: Dropper length moments

X
Ldrop,l Ld'r'op,2 Ldrop,3 Ldrop,4 Ldrop,S Ldrop,ﬁ Ldrop,7 Ldrop,S Ldrop,9

0.64 -0.45 -0.68 -0.6 -0.34 -0.36 -0.08 0.19 0.95
0.33 0.81 1.43 1.83 1.83 1.81 1.50 0.98 0.41

S

= Lpom [cm]
olem]

Table 1 shows that the expectation of dropper lengths is higher than thealamilime at the extremities and
lower in the center of the span with a gap of almbetn for some cases. Moreover, the standard deviation
is very high at the center of the span and low at extremities.

Figure 8 displays the Pearson matrix correlation which shows a very stayrgjation of almost 1 between
every droppers but those at the extremities. The high disparity of drdepgths, the high gap between
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Figure 8: Pearson correlation matrix of dropper lengths

nominal length and expectations obtained, and the strong correlation Inetineggper lengths leads to the
conclusion that other parameters not taken into account have a nbgisleg/ariability, which impacts the
contact wire deflection.

4.2 Statistical identification

Taking parameters discussed in section 2.1, the whole inverse stochadtienpris solved under python
with OpenTURNS [7] module while the static problem is solved by OSCAR[8}ltelized on 40 nodes.
Each single static computation lasts around 2s, which leads to an evaluatis pfn around 80s. One
converged to the result after 2300 iterations with 3300 evaluatiodg f in 3 days.

A first optimization led to high mean values of dropper lengths,,,,; compensated by a high mean value
of Tayw. These incoherent results have been solved by fixing the mean valdgg.gf ; which are the
only measured quantity during maintenance and consequently the moshtejaaatity to maintain fixed.
The resultings®P? is displayed in Table 2

Table 2: Optimal statistical parametex®?

X
TMW AH Ldrop,l Ldrop,2 Ldrop,3 Ldrop,4 Ldrop,s Ldrop,G Ldrop,7 Ldrop,S Ldrop,g

p[SI] | 20575 1.388 1.244 1.098 0.998 0.945 0.934 0.945 0.998 1.0982441
o[SI] 818 0.0065 0.0067 0.0050 0.0045 0.0045 0.0038 0.0044 0.0083®034 0.0070

Table 2 shows thal'hsw has a standard deviation of around 818N, which is a very large value giie
tension is regulated by masses installed at the forward and after endscatéhary. One thus has to investi-
gate the reason of this large variation, which can be observed in a singi®oa An possible explanation is
the global shifting of the contact wire relatively to the messenger wire duetcréep or thermal expansion.
Figure 9 shows that a shifting of 2cm can induce a variation of deflectibighsas an increase of 500N of
TMW-

While in the model taken, heights of the contact wire at the steady arms hemdiked in order to get the
chosenA H, the real height is variable, but depends on several parametersxdtaple, the dropper lengths
of droppers close to the steady arm and the lengths of the two spans Iynkeel fteady arm seem to have a
significant influenceA H is thus not independent of sonfgy,.op ; as one has supposed before. The model
could thus be improved taking into account this information.

During the manufacturing of droppers, the measurement accuracyipletiggh islem. The L g,.qp,; found
thus have a coherent value of standard deviation of bet@ebmm and7mm. One however observes a
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twice higher variation around the extremities of the span. This issue carelte the link withA H not taken
into account or to a bias induced by either measurement or model whictbeanemixed while correcting
measurements.

Figure 10 shows the confidence region in which the deflection 1989a of probability to be, considering
the input gamma distributions chosen with hyper-parameaféts One observes a large area which is mainly
due to the method applied to maximize uncertainty (maximum entropy principle).

5 Conclusion

This paper illustrated the possibility to use statistical inverse problems to th@zacthe distribution of
catenary geometries based on a few sensitive parameters. While the mathedantually found to be quite
efficient, the initial analysis ignored the key parameter of messenger wis@teand led to inconsistent
results. This highlights the importance of initial parameter choice and thenmesé strong bias when this
choice is not properly made.

In the end, it appears global shifting of the contact wire relatively to thesemeger would have an impact
similar to that of variations in the tension and that one should not ignore thelation of certain parameters
like wire distance at mast and nearby dropper lengths.

Finally, a tighter confidence region, than that shown in figure 10, coulbb&ned by applying the Bayes



method to estimate the posterior probability distribution fm@ﬁf,?,ﬁ’o”t = p;’;f,?,:"(sopt) [9, 5].

In the near future, this statistical geometric model will be used to generatemageometries and use them
as input for dynamic simulations, thus resulting in statistics on the pantograyéiccdorce, which is the
key parameter of interest. Adjusting maintenance rules will be possible if arelleéion between statistics
on geometry and contact force can be obtained.
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