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ABSTRACT: In order to face challenges of increased traffic and speed on their infrastructures, railway com-
panies need to develop numerical tools able to predict the dynamic behaviour of the track. Currently, two
approaches are widely used: the first one is a train-based methodology in which train dynamic is well repro-
duced but track is only represented as equivalent springs, the second one is a FEM model or FEM/BEM model
of track in which the train is simply modeled as a moving load but the complexity of track taken into account.
Dynavoie software studied in this work aims to offer a new approach by representing in details both track and
train. Understanding train-track interaction requires transients on long track segments, leading to very large
finite element models and high computation time. The specificity of Dynavoie software is to use periodic prop-
erties of the track to generate a reduced slice model, and then build the track as a combination of these slices.
Computation time is then highly reduced. The present work focuses on the initial step of the model reduction
where computations in the frequency and wave domains are used. The resulting 3D periodic computations are
compared to 2.5D FEM/BEM results from the literature and the content of the receptance curve is discussed in
relation with dispersion curves.

1 INTRODUCTION surements. Several numerical models have been pro-
posed to represent track behaviour. As Finite Ele-

Nowadays, trends in railways are for more traffic at ~ ment Models (FEM) are widely used for engineering

higher speeds (Krylov 1995). This statement leads to
an increase of track mechanical loads, which implies
more maintenance work. However, maintenance work
is costly and performed at night when there are no op-
erating trains, which leads to big challenges both in
management and in the ability to do the whole work in
the imparted time at a reasonable cost (Esveld 1997).
In order to face this challenge, railway companies are
willing to improve their current tracks design in order
to increase the life span of their infrastructures, no-
tably by introducing under sleeper pads, ballast mats,
or improving bearing soil capability (Esveld 1997).

Numerical models of tracks could then be a tool
to help railway companies to specify the best solu-
tion for a given site (Esveld 2001), to check if these
designs are really a progress regarding the whole
track structure and to predict the behaviour of a
given section of track, complementing in-sifu mea-

purposes, various authors (Hall 2003, Aradjo 2010,
Kouroussis et al. 2011, Banimahd and Woodward
2007, Connolly et al. 2014, among others), have pro-
posed an approach based on 3D FEM to model rail-
way tracks. The main drawbacks of these models are
the large computational time, the large storage capa-
bilities required, the finite soil layer and wave reflec-
tions at boundaries. To reduce time computation, au-
thors (Ribeiro 2012, Fernandes et al. 2014) have pro-
posed 2D with modified plane strain FEM models,
which allows good description of the track geometry
but implies approximation regarding cross section of
track. Even if the model is two dimensional, a track
width can be specified to compute stress in layers.
This methodology leads to approximations since the
repartition of stress is not uniform in the width of the
track. Moreover, a 3D computation has to be made
in parallel to determine this value. Accounting for



track periodicity on its developing direction, some au-
thors have proposed a coupled FEM-BEM numerical
model in 2.5 D, which implies approximations on the
track geometry (Yang et al. 2003, Francois et al. 2010,
Alves Costa et al. 2012, among others) or in 3D repre-
senting the whole problem in one generic cell (Chebli
et al. 2008). Time computation is then reduced but
calculations can only be made in the frequency do-
main, implying uniformity of track in its developing
direction.

Dynavoie is a finite element model that fully takes
into account interactions between track, considering
all its components, and train. This numerical model,
used and described hereafter, presents an hybrid ap-
proach between 2.5D FEM calculation and 3D FEM.
It is based on the finite element representation of a
’slice” (basic cell with one sleeper repeated to form
the track) of the track and uses track periodicity to re-
duce the number of degrees of freedom to take into
account. This methodology allows both a good repro-
duction of track geometry and low time computation.

The aim of this work is to assess the model abil-
ity to represent track behaviour at the frequencies of
interest, that is to say at least between 0 and 100 Hz.

A comparison with a 2.5 D FEM/BEM model is un-
dertaken in order to verify the accuracy of the method-
ology employed. Then, the results are used to explicit
the content of the track receptance curve, notably the
resonance peaks and their links with eigen modes.

2 3D CALCULATION OF THE FREQUENCY
RESPONSE OF TRACK

The methodology employed hereafter to exploit peri-
odicity of track is derived from the work of Sternchiiss
(2009) on bladed disks, and is similar to that of Chebli
et al. (2008) for railway tracks.

2.1 Direct and inverse Fourier transforms in the
spatial domain

A structure is said spatially periodic when it is com-
posed of cells geometrically identical, generated by a
translation on a predefined direction from the refer-
ence cell. The reference cell width is Ax.

The fields studied in the model can then be dis-
cretized using this periodicity, that is to say each func-
tion u can be defined by values u,, = u(z, ) where x,,
is a set of values of x, n being in [—oo oo]. Then, for
all n, z,, = nAzx and u,, = u(nAx).

One can then compute Fourier transform

o0

Ulkey) = Z u(nAx)e e (1)

n=—oo

where U (k) is a complex shape defined on the mesh
composed of repeated cells.

The conventions used in this work regarding
Fourier transform are the following:

e 1., is the wavelength or spatial periodicity in
number of cells, so n., € [1 oo]. The physical
wavelength A\, in length unit is then given by
Ay = Neg X A

e The discrete wavenumber Kex in
rad/number of cells is then given by
Kex = 2T/Nez, SO Kep € [0 27|, and the
physical wavenumber k, in rad/unit of length
by k, = 2m/\,. The relationship between both
is ky = Kep /A,

The inverse Fourier transform allows to recover
physical field u based on its Fourier transform U

1 21 )
u(nAx) = —/ U(Ker )€™ dE ey 2)
0

27
For a fixed value of the wavenumber «.;, the field
u is simply equal to

u(nAz) = Re(U(Kep)e™ ™) 3)

This property allows recovering values in the whole
space, knowing only those taken on the first cell.

Looking at equation 1, U is real if x., is equal to O,
T or 2.

As for all n € [00o0], cos(nke) = cos(n(2r —
Ker)) and sin(nke,) = —sin(n(27 — ke)), U, and
Usr—x., are conjugate.

Taking into account this last property, and know-
ing the Fourier transform U, the real-valued field u
is recovered computing the inverse Fourier transform
given by

u(nAe) = o /0 " O(Re(U(en)) cos(mies)

™

—Im(U (Kez)) Sin(nkes ) ) ey “4)

As K., can take any value in [0 27| which is a con-
tinuous interval, numerical applications must make a
choice regarding which values of k., to consider and
how to build the numerical approximation of the in-
verse transform. Since the integral is a linear function,
one can express its result as a linear operator

(utnda)} = (5l { petprne) ®

The size of matrix [E] is then n x 2k, with n corre-
sponding of the number of slices that the user wants to
represent and k£ € [1 N| the number of wavenumbers
chosen, with the convention ko = 0 and Ky = 7
This matrix is defined as following:

[(Krr1 — K1) + (Kg — Fg-1))]
21

Eyak-1) = cos(nky)

) [(Krt1 — Kr) + (K — Fg-1)]

27 ©)

By o) = —sin(nsky,



which corresponds to a simple integration rule as-
suming U(k.,) constant over the interval [(kj +
Kk-1)/2 (K1 + K1) /2]

2.2 Continuity condition

The properties mentioned above are applied to the
displacement {¢} defined on the degrees of freedom
(DOF) of the structure.

Since motion between adjacent cells is continuous
a condition must be introduced. The response on a left
cell edge has to be equal to that of the preceding cell
right edge, thus {gc s+ (nAZ) } = {Grigne(n — 1)Az)}.
As each ¢, represents all the displacements at the
DOF of the cell n, one can define the observation ma-
trices [¢;] and [c,] (the same for all cells if the domain
is regularly meshed), which for each cell allow to ex-
tract on the whole DOFs the ones corresponding to
respectively left and right boundaries.

For a response at a given wavenumber, taking to ac-
count the equation 3, the condition can be written as
(] {Q(Kex)} = [a] {Q(Kex) } €= which, differen-
tiating real and imaginary parts, leads to

C (ko) {EEE?)EZS?} =0 D
with

—sin(Kes)[cr]

sin(Kez ) [cr] [c1] — cos(kea)[cr]

[C (Kew)] = {[Cl] — c08(Kez)[cr]

2.3 Response in the frequency/wavenumber domain

For an external force { f} applied to the system, s be-
ing the Laplace variable, the equations of motion take
the frequency domain form

[Z(5)]{Q(Kecar 8)} = {F (Kew, 5) } (3)

where the dynamic stiffness Z(s) = Ms? + K con-
tains mass, stiffness as well as hysteretic damping
(constant imaginary part of K') or viscoelastic contri-
butions (frequency and temperature dependent K (s)),
see (Balmes 2013).

Each component of this Fourier series, that is to
say each {Q,,, } for all k., € [0 27] is then totally
described by the system composed of the condition of
continuity numbered 7 and by the following equation:

9 ) )

(Rl ) ®

Accounting for continuity is done by elimination.
One first seeks a basis 7" of ker ([C(k.,)]) and uses it
to solve the forced response

(T"Z(s)T)Q =T"F(s) (10)
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Figure 1: Choice of x based on dispersion diagram

Computing this response at every target frequency
s = 1w can be fairly long, modal synthesis methods
are thus used. One first computes the periodic modes
solutions of

(T" [K —wiM]T) {¢;} =0 (11)

First order correction for the imaginary part of the
dynamic stiffness is then used to obtain a reduced
model for which the frequency response can be com-
puted efficiently.

The second interest of computing periodic modes
is to build a dispersion diagram showing the evolu-
tion of modal frequencies as a function of wavenum-
ber. This motivates a strategy for choosing wave num-
bers. Instead of taking values evenly distributed in
[0 27| interval (which is the classic approach of dis-
crete Fourier transform), the choice is made to refine
the interval for small values of k, and then to space
the values as « increases. This choice is justified look-
ing at the shape of the dispersion diagram in Figure
1 which shows this diagram for a basic system com-
posed of superstructure (rail modeled as a beam, pads,
monoblock sleepers) only laying on 75 cm of ballast.

3 APPLICATION

3.1 Definition of track receptance

A widespread way to get information on track be-
haviour in dynamics is to perform a receptance test.
It consists in measuring rail displacement at the point
of the rail where a hammer impact is performed. This
test characterises the global behaviour of track for a
range of frequencies and allows to identify the reso-
nances of the structure: it characterises the structure
sensitivity to vibrations (Man 2002).

Receptance function is the transfer function be-
tween the displacement of the rail and the force ap-
plied:

Suu

Hp =
uF SFF

(12)

Where H,r is the track receptance
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Figure 2: Typical receptance curve for ballasted tracks, from
Dahlberg (2003)

Table 1: Frequency range in which the peaks of receptance curve
can be found, (Knothe & Grassie 1993)

Point  Frequency range (Hz)
1 40-140
2 100-400
3 400-1200

S, autospectrum of displacement (in m?s)

Srr autospectrum of applied force (in N?s).

For all ballasted tracks, receptance curve has the
characteristic curve displayed in Figure 2 with three
resonances. According to various authors (Knothe
& Grassie 1993, Man 2002, Ferreira 2010, Ribeiro
2012), the first peak corresponds to full track resonant
frequency, the second to baseplate resonant frequency
and the last maximum is identified to pin-pin resonant
frequency. All these points are related to vertical vi-
bration modes of the track.

The frequency range in which these resonances can
be found is summarised in Table 1.

Historically, receptance tests are used to calibrate
material parameters in numerical or semi-analytical
models (Knothe & Wu 1998). Superposition of the
experimental curve with the one given by the model
allows adjusting parameters.

The objective of the model validated here is to as-
sess the track mechanical behaviour under a passing
train. One thus focuses on the first part of the recep-
tance curve (up to 150 Hz) and seek to see how this
can be properly reproduced using a finite slice model
of the track.

3.2 Comparison to 2.5D model

A receptance test has been modeled by Alves Costa
et al. (2012), using a 2.5D FEM/BEM model, for the
site of Carregado in Portugal.

This paragraph aims at comparing the results of

Table 2: Material properties

Depth E v p
(m)  (MPa) (kg/m*)
Ballast 0.22 97 0.12 1590 0.061
Subballast 0.35 212 0.20 1910 0.054
Embankment  0.30 212 0.20 1910 0.054
Soil 4 80 0.2 1900 0.06
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Figure 3: Receptance function for Carregado site, Alves Costa,
Calcada, & A. Silva Cardoso (2012)
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Figure 4: Computed receptance function for Carregado site

their work, displayed in Figure 3 to the receptance
curve computed using the methodology described in
part 2. The parameters used for the computation are
summarised in Table 2. To get the result in Figure 4,
equation 9 is solved for sixty values of x, using a dis-
cretization of 0.2 Hz in frequency.

In Figure 3, only two resonance peaks can be iden-
tified, the first one at around 20 Hz and the second one
at around 80 Hz. In the receptance curve computed in
this work, these two peaks are clearly visible: the first
one at 20 Hz, the second one at 110 Hz.

The main feature of the receptance in this fre-
quency range is the global vertical track mode, first
peak according to (Knothe & Grassie 1993) and both
models agree on its frequency. The response shown
for the 2.5D model seems much smoother and the lev-
els differ. The origin of these differences is interesting
to analyze. A probably critical source is the fact that
the 2.5D FEM/BEM model considers infinite soil lay-
ers while the 3D periodic model presented in this pa-
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Figure 5: Comparison of receptance curve for a soil width of 6m
(in blue) and of 10m (in green)

per considers a FEM slice which has a finite dimen-
sion. The choice of the width of soil to consider in
a finite slice has a great influence on the receptance
curve shape, as displayed in Figure 5. The level of
the first resonance peak of the receptance curve de-
creases when the soil width taken into account in-
creases which explains why the level of this peak in
the FEM/BEM model is lower. A soil width of 10m
will be used for the analysis below.

A second aspect is the fact that the 3D model allows
a correct representation of sleepers and rail supports,
which are assumed continuous in the 2.5D FEM/BEM
model. Finally, the relatively coarse discretization in
the wavenumber domain used here is another source
of errors that needs to be investigated in relation with
the cost of computing each wavelength.

3.3 Interpretation of the resonance peaks content

One of the main interests of the proposed approach is
to offer a fine description of the receptance content.
Beyond the correct reproduction of the response on
the rail, a second step is to identify the mechanisms
that generate the presence of resonances. Together
with the forced response problem, the mode compu-
tations were performed using the same wavenumber
() distribution. The result can be represented using a
dispersion diagram shown in Figure 6.

The peaks of the receptance curve in Figure 4 can
be explained looking at this diagram: they all occur
at a frequency corresponding to an horizontal part of
a mode in the dispersion curve for small wavenum-
bers. For instance, the first peak at 18 Hz is principally
linked to the second mode of the dispersion diagram,
which is the first track compression mode. Table 3
shows the displacement of the track at the peaks of
the receptance curve and the corresponding prepon-
derant periodic mode (the modes displayed are mate-
rialised by a red cross in Figure 6). It is worth notice
that the wider the horizontal part of a mode in the dis-
persion diagram is, the narrower the peak of the re-
ceptance curve is. Besides, the resonances identified
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Figure 6: Dispersion diagram for Carregado site

Table 3: Forced response of track at the frequencies where peaks
are found in receptance curve and corresponding modes for dif-

ferent values of s

Forced Response Periodic Mode

18.5 Hz, k=0.16

31.1 Hz, k=0.03

56 Hz, k=0.20

in the receptance curve are the result of a combina-
tion of periodic modes as represented in Figure 6: at
a given frequency, for instance 31 Hz, many periodic
modes can be found intercepting the horizontal line
for different wavenumbers.

There is no reciprocity, as not only eigen modes rel-
ative to vertical displacement of track are represented
in the dispersion diagram. For instance, the first mode
could have provoked a peak at 12.4 Hz, but as it is a
shear mode as displayed in Figure 7, there is no im-
pact of it on the receptance curve. On the contrary, all
eigen modes affecting vertical displacement of track
provoke or participate in creating a peak in the recep-
tance curve. The different impact of modes in the re-
ceptance curve is also visible in Figure 4, in which
the vertical dotted lines show the eigen modes for a
given wavenumber ~ (corresponding to a given length
of track), in effect, many modes represented in this
curve are not linked at all to any resonance peak.



12.4 Hz, k=0

Figure 7: Periodic mode at 12.4 Hz corresponding to a wavenum-
ber of 0

4 CONCLUSION

A methodology to compute track response in the
frequency-wavenumber domain taking into account
the 3D geometry of track have been proposed and
compared to a 2.5D FEM/BEM model for the repre-
sentation of a track testing: the receptance test. Some
differences between the two results have been identi-
fied, but both models agree on the main characteristics
of this test.

The present work deepens the understanding of the
results of this widespread in-situ testing. The links be-
tween the periodic modes of the track and resonance
peaks of the receptance test have been clarified. This
relationship will be of great interest to compare track
designs and to understand how to predict the track be-
haviour in dynamics.

Further steps will be the investigation of the need
to extend the track model or to introduce absorbing
boundary conditions to avoid the appearance of res-
onances associated with the finite nature of the slice.
The validation of model reduction strategies that re-
construct the response based on computations for a
few wavelengths and validations of strategies to build
time domain damping models from the hysteretic
models used here will be performed. Confrontation
with experiments for both receptance and train pas-
sage will come next.
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