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Nomenclature

Scalars

a,b length of honeycomb cell sides (x-direction and inclined)
θ angle of cell
t, t ′ thicknesses of simple, double honeycomb cell wall
h layer thickness
E Young modulus
G shear modulus
ν Poisson’s ratio
ρ density
G?

xz(G
?
1z),G

?
yz(G

?
2z) effective transverse shear moduli of the equivalent core

E f face sheet Young modulus
u1,u2,w displacements on the mid-plane of a laminate in the material principal

basis (x1,x2,x3)
ux,uy,w displacements on the mid-plane of a laminate in any structural basis

(x,y,z)
U1,U2,U3 displacements of any point on the cross section in the material principal

basis (x1,x2,x3)
x1,x2,x3 spatial coordinates in the material principal basis (x1,x2,x3)
x,y,z spatial coordinates in any structural basis (x,y,z)
β1,β2 slopes around x2 and x1 respectively
γ1,γ2 transverse shear strains at the mid-plane of the plate
θ1,θ2 rotations around x1 and x2 respectively
εi j,γi j normal and shear strains
σi j,τi j normal and shear stresses
ci j,qi j 3D and reduced stiffness coefficients
φk electric DOF
Qk total charge on an electrode
f frequency
ζ damping ratio

Operators

∂ f
∂x spatial derivative of f with respect to x
f,x short notation for the spatial derivative of f with respect to x
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xii Nomenclature

Vectors

{···} any vector
{···}T any vector transposed
{u} displacement field vector on the mid-plane of a laminate
{U} displacement field vector of any point of a laminate
{εεε} ,{S} strain vector, elasticty and IEEE Standard notations
{εεεm} ,{κκκ} ,{γγγ} membrane, curvature or bending, shear strains
{σσσ} ,{T} stress vector, elasticty and IEEE Standard notations
{N} ,{M} ,{Q} membrane forces, bending moments and shear forces
{φφφ} normal modeshapes
{D} electric displacement
{E} electric field

Matrices

[···] any matrix
[···]T any matrix transposed
[A], [B], [D] extensional stiffness, extension/bending coupling, bending stiffness matrices
[F], [H] shear and corrected shear matrices
[Rσ] rotation matrix relating the stress in any structural basis and in the material

principal basis
[Rε] rotation matrix relating the strain in any structural basis and in the material

principal basis
[ΛΛΛ] constitutive law[
NNN
]

shape functions
[BBB] shape functions derivatives
[K] stiffness matrix
[M] mass matrix[
sE] compliance under constant electric field matrix
[d] piezoelectric constants matrix[
εεεT] dielectric constants under constant stress matrix[
cE] stiffness under constant electric field matrix[
εεεS] permittivity under constant strain matrix

Subscripts

··· f quantity relative to the sandwich face sheets
···g quantity relative to the glue
···h quantity relative to the pure honeycomb core
···k quantity relative to a layer k
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xiii

Superscripts
···? effective properties of equivalent core
···k quantity relative to a layer k

Acronyms
AN20 20 milimeter-thick Aluminum/Nomex honeycomb specimen
ASAC Active Structural Acoustic Control
CLPT Classical Laminate Plate Theory
CN20 20 milimeter-thick Carbon/Nomex honeycomb specimen
DOF Degree(s) Of Freedom
FE Finite Element
FEM Finite Element Model
FOST First-Order Shear Theory
FRF Frequency Response Function
HEXA8 8-node 24-DOF brick
HOST Higher Order Shear Theories
L longitudinal direction (Length)
MAC Modal Assurance Criterion
MITC4 4-node 20-DOF shell
QP20W Midé QuickPack patch with two piezoelectric electrodes
RVE Representative Volume Element
SVS Shell-Volume-Shell
W transverse direction (Width)
2D Two-Dimensional
3D Three-Dimensional
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Chapter 1

Introduction

Reducing noise transmission inside cabins is an important concern for the aircraft indus-
try, mainly to improve the comfort of passengers and reduce stress on the crew. Noise in
the cabin has different sources [6] classified in

• exterior sources, whose field is transmitted through the fuselage skin, thermal insu-
lation and trim panel multi-layered structure,

• interior sources, which are mainly related to air conditioning,

• structure borne sound, transmitted through structural parts before being radiated by
the different panels inside the cabin.

Most of the exterior noise is filtered by the fuselage skin and interior furnishing, it nev-
ertheless crosses different structural parts in its propagation and produces noise inside
the cabin. In this propagation, trim panels represent the last barrier before cabin cavity.
They cover the entire walls of the cabin, with the exception of its floor, and the over-
head compartments. They significantly participate in the global acoustical behavior of the
cabin. Figure 1.1 (left) represents a roof trim panel of a cabin representative of generic
NH90 helicopter, this mock-up (named VASCo) has been developed at ONERA DMAE
department in Toulouse. The middle figure shows how the trim panel is positioned in the
VASCo helicopter cabin and the right figure shows how the panel is equipped for active
control test.

Figure 1.1: Trim panel (left), VASCo cabin with trim panel (middle) and test set up for
vibroacoustic control (right)
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2 Introduction

Two main techniques exist aimed at reducing the sound radiated by the vibrating trim
panels inside the cabin. Passive techniques optimize the panel geometric and material
characteristics to minimize the transmission of vibration. Active techniques block, or at
least limit, vibrations by generating suitable lots or antagonist vibrations.

Passive techniques use vibration isolation, to limit the transmission to the panel of
vibrations coming from the main body frame through attachment points, and damping
enhancement, were absorbing materials, typically viscoelastic, are added in the panel
setup. When properly designed, passive treatments are efficient and have the advantage of
not requiring external energy. Efficiency does however typically come with a significant
mass increase and an efficiency that grows with frequency.

Figure 1.2 represents the transmission loss of the VASCo trim panel where the poor
passive performance at low frequencies is clearly visible. The motivation for active vibra-
tion solutions is thus focused on improving performance in the low to medium frequency
range.

Figure 1.2: Transmission Loss of the optimed trim panel (VASCo)

Usually trim panels are made of sandwich composite. Sandwich plates are multilay-
ered structures constituted by high-strength and stiff layers, named face sheets or skins,
bonded to one or more low-density and soft layers, named core. Sandwich panels com-
bine light weight and high stiffness. Therefore, since the World War II, the number of
their applications has steadily increased. Nowadays, sandwich structures are widely used
not only in aerospace industry but also in shipbuilding, construction and sports. Various
material combinations can be used [7]. The face sheets are usually made of metal or fi-
brous composites (aluminum, carbon or glass reinforced plastic composite laminate). For
the core, one distinguishes solid low-density material, such as viscoelastic material film
or solid foam, and expanded high density material in cellular form, such as honeycomb
core. For aerospace applications, both metallic and non-metallic (nomex, fiberglass, kraft
paper [5]) honeycombs are used. Bonding between the honeycomb and the face sheets is
typically achieved with an adhesive as represented on Figure 1.3.
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Figure 1.3: Honeycomb core sandwich composite

Honeycomb core sandwich structures behave like I-beams. Face sheets carry most
of the bending and in-plane loads, whereas the core contributes to the bending stiffness,
out-of-plane shear and compressive strength. Their mechanical efficiency is much better
than a solid plate or beam with equivalent weight, as shown in Table 1.1.

Table 1.1: Honeycomb sandwich efficiency [5]

Solid Material Core Thickness h Core Thickness 3.h

Relative Stiffness 1 7 37

Flexural Strength 1 3.5 9.2

Relative Weight 1 1.03 1.06

A honeycomb sandwich trim panel has a high strength to mass ratio, but its acoustic
and dynamic properties need to be improved [8], through passive viscoelastic treatments
in the high frequencies and active control in the low frequency. The first objective of the
proposed work is thus to propose numerical models that could then be used to optimize
passive and active panel characteristics. The second objective is to validate these models
through experiments.

In fact, the damping behavior of viscoelastic based honeycomb core trim panels, pos-
sibly optimized with viscoelastic layers, contributes passively to alleviate high frequency
noise and vibration. Thus, the biggest difficulty is to remove low and medium frequency
noise, which is the object of the present work.
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4 Introduction

To properly design an active control system for trim panels, simulations are necessary
for actuator placement and sizing and general performance evaluations. In the case of hon-
eycomb cores, a detailed model of the cell geometry is rapidly inaccessible. A detailed,
yet still simplified, representation of the cell using 3D plate elements for all walls will be
considered in chapter 3. For this cell representation, a sample test beam 900×45×21mm
leads to a model with about 100000 DOFs. This is acceptable for sample validations, but
is clearly not acceptable for full panel predictions. For the considered honeycomb, a 2
meters long and 1 meter wide helicopter trim panel would require 4.106 DOFs.

The first difficulty addressed in this work is thus to build an effective model repre-
senting the honeycomb core that allows element sizes not directly related to honeycomb
cell sizes. Chapter 2 thus recalls fundamentals of classical laminate theory and provides a
literature review of models used to represent honeycomb based sandwich panels. Classi-
cally, honeycomb panels are represented using an orthotropic volume for the honeycomb
and shell elements for skins. Methodologies to integrate this model into finite elements
(single layer, zig-zag and multi-element representations) and to estimate effective material
parameters for the orthotropic core are detailed showing the variety of existing approaches
and the lack of general agreement on exact details.

The first contribution of the thesis is the introduction, in chapter 3, of a numerical
homogeneization procedure to estimate effective core parameters. The principle of this
methodology is to correlate the frequencies of periodic modes in a detailed 3D and an
effective model to estimate material properties of the effective model that minimize mis-
match. The novel application of this approach to honeycomb panels gives a very general
approach that can be used to build equivalent models using extremely detailed cell mod-
els. The analysis of the equivalence for a wide range of wavelength/frequencies gives
useful insight on the validity of models.

Illustrations are given for a specific range of honeycombs with a detailed 3D plate
model and a shell, orthotropic volume, shell model (SVS) effective model. The SVS
model is preferred here because it can easily be implemented in most FEM software and
leads to significant model size reduction (a factor 10 in this particular case). The results
obtained are close to those of earlier methods, so the real interest is in the new ability
to assess the simplified model and to address issues such as the effect of glue or local
bending of cell wall.

Numerical homogeneization relies on the knowledge of detailed cell geometries and
material properties. Since these are typically not known with very high accuracy, tests
on sandwich samples are necessary. Helicopter or aircraft trim panels are commonly
made with non-metallic honeycomb core sandwich, which have the advantage of a lower
density. In particular, Nomex paper based honeycomb are the focus of the present work.
Nomex paper, basis of honeycomb Nomex core, is a non woven sheet made of short
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aramid fibers (Nomex). It is calendered before being impregnated with phenolic resin
which is typically viscoelastic. The glue used to bond the Nomex honeycomb to the skins
is probably also viscoelastic.

Chapter 4 details the use of modal tests on sample sandwich beams to estimate the ma-
terial parameters of a viscoelastic core. Viscoelastic materials have a significant frequency
and temperature dependence that is correctly identified by the tests. Tests on beams with
aluminum and carbon skins are shown and demonstrate the ability to have very predictive
models.

The final contribution of the thesis is, in chapter 5, the introduction, validation and
use of a FEM model of honeycomb panels equipped with piezoelectric actuators. Such
models are needed for active control predictions in order to avoid costly trial and error
phases on actuator placement and sizing.

The formulation of a piezoelectric shell element, based on the work of Piefort [9],
is first introduced. Its integration in a numerical simulation process is then discussed
for actuator and sensor configurations. To validate the model a series of modal tests are
presented and test/analysis correlation demonstrates very good model validity.

The considered honeycomb sandwiches are shown to exhibit a strong skin bending,
which corresponds to the static deformation associated with the patches. This static con-
tribution is particularly important for honeycomb panels and fundamentally limits the
achievable performance. The experimental presence of localized sound sources was a
significant factor motivating the need for this work. The conclusion on the importance of
static correction effects clearly explains the origin of these effects and opens perspectives
on the ability to redesign actuators to obtain better performance. The chapter concludes
by discussing applications of the proposed model in further design work, thus preparing
ground for a full control design [10].
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8 Honeycomb core sandwich composite survey

2.1 Introduction
The first step towards the objective proposing predictive models of active honeycomb
panels is to model panels. This chapter thus provides a partial review of the literature
existing on the topic.

Section 2.2 presents the Classical Laminated Plate Theory, which will be used to
model panel skins and will also serve as reference for piezoelectric patch model intro-
duced in Section 5.2.

Section 2.3.1 then classifies approaches to model the dynamic properties of sandwich
structures in four main strategies. The classification is done in terms of increasing com-
plexity, from the global approximation model in which one equivalent single layer in
modeled, to the detailed 3D finite element model.

Within these approaches, it is classical to consider the honeycomb as an orthotropic
material. Since 1958 [11], many methods for honeycomb elastic material properties es-
timation were introduced [12] and none of the approaches seems to have the total agree-
ment. Section 2.3 provides a literature review on this subject and a numerical homo-
geneization procedure will be introduced in the next chapter.

2.2 Laminated plate theory
Three-dimensional finite element models developed in this work use laminated plate el-
ements to model honeycomb cell wall, multi-ply composite for face sheets or for piezo-
electric patches bonded on the faces. The different kinematic assumptions for plates
are first presented in Section 2.2.1. Section 2.2.2 then summarizes the plate formulation
for isotropic and orthotropic elastic materials. Section 2.2.3 finally addresses multi-layer
laminates.

In this section the compact notation f,x is used for the partial derivative of the function
f with respect to the variable x, ∂ f

∂x . As x1, x2 and x3 are used for coordinates in space, ∂ f
∂x1

becomes f,1, similarly f,2 = ∂ f
∂x2

and f,3 = ∂ f
∂x3

.

2.2.1 Plate kinematics
The choice of the increasingly elaborate kinematic assumptions can be used to classify
the many existing plate theories.

Figure 2.1 represents Kirchhoff-Love’s, Reissner-Mindlin’s and Reddy’s kinematic
assumptions for the cross section. These assumptions are directly linked to the shear de-
formation modeling.
Classical laminate plate theory (CLPT) based on Kirchhoff-Love kinematic assumptions [13]
doesn’t take shearing across the thickness into account, whereas first-order shear theory
(FOST) with Reissner-Mindlin assumptions [14] and higher order shear theories (HOST)
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Laminated plate theory 9

developped by Reddy [15], and next by Touratier [16] represent with more or less preci-
sion the shear phenomenon.

The first and simplest Kirchhoff-Love theory is accurate enough for thin plates. A
cross section normal to the mid-plane remains straight and orthogonal to the mid-plane
after bending. For thick and soft plates, the shear cannot be neglected, it is taken into
account by enriching the displacement formulation across the thickness. Many improve-
ments exist from linear approximation to higher order theories.

Figure 2.1: Kirchhoff-Love’s, Reissner-Mindlin’s, and Reddy’s theories

The general expression of kinematics has been expressed by Touratier et al. [17]

{U}=


U1 = u1(x1,x2)− x3.w,1(x1,x2)+ f (x3).γ1(x1,x2)
U2 = u2(x1,x2)− x3.w,2(x1,x2)+ f (x3).γ2(x1,x2)
U3 = w(x1,x2)

 , (2.1)

where, as specified on Figure 2.1,

• x3 is normal to the plate,

• u1, u2, w are the displacements of a point M on the mid-plane, along axes x1, x2,
x3,

• U1, U2, U3 the displacements of a point P on the M-cross section, along x1, x2, x3,

• γ1, γ2 are the transverse shear strains at the mid-plane of the plate,

γα = βα +w,α (α = 1,2) (2.2)

• β1, β2 are the slopes around x2 and x1 respectively,

• and f can be seen as a shear function and takes the forms given in Table 2.1,
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Table 2.1: Shear function f

Kirchhoff-Love [13] f (x3) = 0

Reissner-Mindlin [14] f (x3) = x3

Reddy [15] f (x3) = x3(1−
4x2

3
3h2 )

Touratier [16] f (x3) = h
π

sin πx3
h

First-order shear deformation theory with Reissner-Mindlin’s assumptions is widely
implemented for thick plates. The transverse shear strains or stresses are assumed to be
constant within the thickness, therefore to account for the non-uniformity of the through-
thickness shear distribution, correction factors are introduced in the transverse shear con-
stitutive relations (2.26).

Two notations can be found in literature for the rotation of the cross section after
deformation. It is important to clarify this point. One suggests to do this in the context
of Reissner-Mindlin’s assumptions. The displacement field at a point P on the M-cross
section depends on the displacement field at the point M on the mid-plane and on the
rotation of the segment MP

U(P) = u(M)+ΩΩΩ∧MP (2.3)

Classically, the rotation vector ΩΩΩ is written ΩΩΩ = θ1x1 + θ2x2. One introduces a field ΨΨΨ

related to the rotation, classically written ΨΨΨ = β1x1 +β2x2 such that

ΩΩΩ = x3∧ΨΨΨ (2.4)

so that the displacement field at the point P becomes

U(P) = u(M)+ΩΩΩ∧MP = u(M)+ x3ΨΨΨ (2.5)

and the relations between the rotation θi and the slope βi are

β1 = θ2
β2 = −θ1

(2.6)
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2.2.2 2D elastic material law
Both isotropic and orthotropic materials are considered in this work. In these cases, the
general form of the 3D elastic material law is



σ11
σ22
σ33
τ23
τ13
τ12


=


c11 c12 c13 0 0 0

c22 c23 0 0 0
c33 0 0 0

c44 0 0
(s) c55 0

c66





ε11
ε22
ε33
γ23
γ13
γ12


. (2.7)

For orthotropic material, the law depends on 3 Poisson ratios, 3 Young moduli and
3 shear moduli and is given by (3.14) and for isotropic linear elastic material the law is
written as follow,

σ11
σ22
σ33
τ23
τ13
τ12


=

E(1−ν)
(1+ν)(1−2ν)



1 ν

1−ν

ν

1−ν
0 0 0

ν

1−ν
1 ν

1−ν
0 0 0

ν

1−ν

ν

1−ν
1 0 0 0

0 0 0 1−2ν

2(1−ν) 0 0
0 0 0 0 1−2ν

2(1−ν) 0
0 0 0 0 0 1−2ν

2(1−ν)





ε11
ε22
ε33
γ23
γ13
γ12


(2.8)

Plate formulation consists in assuming one dimension, the thickness along x3, negli-
gible compared with the surface dimensions. Thus, vertical stress σ33 = 0 on the bottom
and upper faces, and assumed to be neglected throughout the thickness,

σ33 = 0⇒ ε33 =− 1
c33

(c13ε11 + c23ε22) , (2.9)

and for isotropic material,

σ33 = 0⇒ ε33 =− ν

1−ν
(ε11 + ε22) . (2.10)

By eliminating σ33, the plate constitutive law simplifies, with engineering notations,
σ11
σ22
τ12
τ23
τ13

=


q11 q12 0 0 0
q12 q22 0 0 0
0 0 q66 0 0
0 0 0 q44 0
0 0 0 0 q55




ε11
ε22
γ12
γ23
γ13

 . (2.11)

The reduced stiffness coefficients qi j (i, j = 1,2,4,5,6) are related to the 3D stiffness
coefficients ci j by

qi j =

{
ci j−

ci3c j3

c33
if i, j = 1,2,

ci j if i, j = 4,5,6.
(2.12)
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12 Honeycomb core sandwich composite survey

Hence, the reduced elastic law for an isotropic plate becomes, σ11
σ22
τ12

=
E

(1−ν2)

 1 ν 0
ν 1 0
0 0 1−ν

2

 ε11
ε22
γ12

, (2.13)

and {
τ23
τ13

}
=

E
2(1+ν)

[
1 0
0 1

]{
γ23
γ13

}
. (2.14)

Under Reissner-Mindlin’s kinematic assumptions, given by (2.1) and (2.2) with shear
function f (x3) = x3, the linearized strain tensor is

[εεε] =

 u1,1 + x3β1,1
1
2(u1,2 +u2,1 + x3(β1,2 +β2,1)) 1

2(β1 +w,1)
u2,2 + x3β2,2

1
2(β2 +w,2)

(s) 0

 . (2.15)

So, the strain vector is written,

{εεε}=


εm

11 + x3κ11
εm

22 + x3κ22
γm

12 + x3κ12
γ23
γ13

 , (2.16)

with {εεεm} the membrane, {κκκ} the curvature or bending, and {γγγ} the shear strains,

{εεεm}=


u1,1
u2,2

u1,2 +u2,1

 , {κκκ}=


β1,1
β2,2

β1,2 +β2,1

 , {γγγ}=
{

β2 +w,2
β1 +w,1

}
. (2.17)

Note that the engineering notation with γ12 = u1,2 + u2,1 is used here, rather than the
tensor notation with ε12 = (u1,2 + u2,1)/2 . Similarly κ12 = β1,2 + β2,1, whereas a factor
1/2 would be needed for the tensor.

The stress resultants are obtained by integrating the stresses through the thickness of
the plate,

Nαβ =

x3(0)+h/2∫
x3(0)−h/2

σαβ dx3, (2.18)

Mαβ =

x3(0)+h/2∫
x3(0)−h/2

x3 σαβ dx3, (2.19)
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Qα3 =

x3(0)+h/2∫
x3(0)−h/2

τα3 dx3, (2.20)

with α,β = 1,2, and x3(0) the position of the mid-plane from the reference-plane (or
mesh-plane).

Figure 2.2: Geometry of an unsymmetric plate

The plate formulation links the stress resultants, membrane forces {N}, bending mo-
ments {M} and shear forces {Q}, to membrane {εεεm}, bending {κκκ} and shearing {γγγ}
strains,  N

M
Q

=

 A B 0
B D 0
0 0 F

 εεεm

κκκ

γγγ

. (2.21)

Therefore, the non-zero terms of the extensional stiffness matrix [A], extension/bending
coupling matrix [B], and the bending stiffness matrix [D] are calculated as

Ai j =

x3(0)+h/2∫
x3(0)−h/2

qi j dx3 if i, j = 1,2, A33 =

x3(0)+h/2∫
x3(0)−h/2

q66 dx3, (2.22)

Bi j =

x3(0)+h/2∫
x3(0)−h/2

x3 qi j dx3 if i, j = 1,2, B33 =

x3(0)+h/2∫
x3(0)−h/2

x3 q66 dx3, (2.23)

Di j =

x3(0)+h/2∫
x3(0)−h/2

x2
3 qi j dx3 if i, j = 1,2, D33 =

x3(0)+h/2∫
x3(0)−h/2

x2
3 q66 dx3, (2.24)

F11 =

x3(0)+h/2∫
x3(0)−h/2

q44 dx3, F22 =

x3(0)+h/2∫
x3(0)−h/2

q55 dx3. (2.25)
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14 Honeycomb core sandwich composite survey

An improvement of Mindlin’s plate theory with tranverse shear consists in modifying
the shear coefficients Fi j by

Hi j = ki jFi j, (2.26)

where ki j are correction factors. Reddy’s 3rd order theory, see Table 2.1, brings to ki j = 2
3 .

Very commonly, enriched 3rd order theory is used, and ki j are equal to 5
6 and give good

results. For more details on the assessment of the correction factor, see ref. [18].

For an isotropic symmetric plate (x3(0) = 0), the in-plane normal forces N11, N22 and
shear force N12, function of the kinematics parameters, become


N11
N22
N12

=
Eh

1−ν2

 1 ν 0
1 0

(s) 1−ν

2


u1,1
u2,2

u1,2 +u2,1

 , (2.27)

the 2 bending moments M11, M22 and twisting moment M12,
M11
M22
M12

=
Eh3

12(1−ν2)

 1 ν 0
1 0

(s) 1−ν

2


β1,1
β2,2

β1,2 +β2,1

 , (2.28)

and the out-of-plane shearing forces Q23 and Q13,{
Q23
Q13

}
=

Eh
2(1+ν)

[
1 0
0 1

]{
β2 +w,2
β1 +w,1

}
. (2.29)

Formulations (2.27) to (2.29) are needed for the parametric study on reduced models
(Section 3.2.3).

One can notice that for a symmetric plate, the reference plane is the mid-plane of the
plate (x3(0) = 0) and the extension/bending coupling matrix [B] is a zero matrix.

Using expressions (2.22) to (2.25) for constant qi j, one has for a non-zero offset
(x3(0) 6= 0)

Ai j = h.qi j Bi j = x3(0).h.qi j Di j = (x3(0)2.h+
h3

12
).qi j Fi j = h.qi j (2.30)

with subscripts i, j in accordance with (2.22) to (2.25). The constitutive matrix clearly
appears as a polynomial function of h, h3, x3(0)2h and x3(0)h. If the ply thickness is kept
constant, the constitutive law is a polynomial function of 1,x3(0),x3(0)2.
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2.2.3 Global multi-layered laminate theory

In the composite field, multi-ply laminates are widespread. The principle of the global
multi-layered laminate theory is to replace the sandwich structure by a single equivalent
layer. The limits of this approximation are discussed in Section 2.3.1. To provide a good
stiffness in all laminate directions, unidirectional fiber reinforced composite layers are
stacked with specific orientation, such as 0◦/45◦/90◦.

Figure 2.3: Geometry of an N-layered laminate

The constitutive matrix for an angled lamina can be expressed in terms of the consti-
tutive matrix [q]k, in the principal directions (x1,x2,x3) of the layer k, with a rotation

[
q′
]

k =
[
Rk

σ

]−1
[q]k

[
Rk

ε

]
. (2.31)

In (2.31),
[
Rk

σ

]
and

[
Rk

ε

]
are the rotation matrices relating the stress {σσσ′}k and strain

{εεε′}k in any structural basis (x,y,z) to {σσσ}k and {εεε}k in the material principal basis
(x1,x2,x3). The normal axis z = x3 and the angle θk from x to x1, are shown on Figure 2.4.

Figure 2.4: Material and structural basis
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16 Honeycomb core sandwich composite survey

For each constitutive layer of the laminate, the rotation matrices take the following
forms,

[
Rk

σ

]
=


cos2θk sin2θk 2sinθkcosθk 0 0
sin2θk cos2θk −2sinθkcosθk 0 0

−sinθkcosθk sinθkcosθk cos2θk− sin2θk 0 0
0 0 0 cosθk −sinθk
0 0 0 sinθk cosθk

 , (2.32)

and,

[
Rk

ε

]
=


cos2θk sin2θk sinθkcosθk 0 0
sin2θk cos2θk −sinθkcosθk 0 0

−2sinθkcosθk 2sinθkcosθk cos2θk− sin2θk 0 0
0 0 0 cosθk −sinθk
0 0 0 sinθk cosθk

 , (2.33)

and in a compact form,

[
Rk

σ

]
=


[
Rk

σ

]
(1,2,6) 0

0
[
Rk

σ

]
(4,5)

 ,
[
Rk

ε

]
=


[
Rk

ε

]
(1,2,6) 0

0
[
Rk

ε

]
(4,5)

 . (2.34)

The plate formulation applies for each layer k, in the structural basis (x,y,z),

 N
M
Q


k

=

 A′k B′k 0
B′k D′k 0
0 0 H′k

 εεεm

κκκ

γγγ

. (2.35)

That is to say, with Reissner-Mindlin’s plate assumptions,


Nx
Ny
Nxy


k

=
zk∫

zk−1

dz
[
q′p
]

k


ux,x
uy,y

ux,y +uy,x


+

zk∫
zk−1

z dz
[
q′p
]

k


βx,x
βy,y

βx,y +βy,x

 ,

(2.36)
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
Mx
My
Mxy


k

=
zk∫

zk−1

z2 dz
[
q′p
]

k


βx,x
βy,y

βx,y +βy,x


+

zk∫
zk−1

z dz
[
q′p
]

k


ux,x
uy,y

ux,y +uy,x

 ,

(2.37)

{
Qyz
Qxz

}
k
=

5
6

zk∫
zk−1

dz
[
q′t
]

k

{
βy +w,y
βx +w,x

}
, (2.38)

with zk defined on Figure 2.3. And where one distinguishes the reduced in-plane elas-
tic coefficients qi j and q′i j for i, j = 1,2,6 in matrices

[
qE

p
]

k,
[
q′Ep
]

k and transverse shear
elastic coefficients for i, j = 4,5 in matrices

[
qE

t
]

k,
[
q′Et
]

k. For a symmetric laminate
meshed on its mid-plane(z0 =−h

2 ),
[
Bk] and thus the second term of the sums (2.36) and

(2.37), are equal to zero.

The application of the first-order plate theory to a multilayered laminate is now very
classical, one can cite, for example, books by Jones [13] and Berthelot [18]. The global
laminate stress resultants are the sum of every k-layer stress resultant in the structural
basis (x,y,z). The stiffness coefficients (q′i j)k are constant but can be different from one
layer to another, and the displacements u, v, w and the slopes βx and βy are not functions
of z. Thus the laminate stress-strain relation is

 N
M
Q

=

 A B 0
B D 0
0 0 H

 εεεm

κκκ

γγγ

. (2.39)

with

[A] =
N

∑
k=1

[
Rk

σ

]−1

(1,2,6)
[qp]k

[
Rk

ε

]
(1,2,6)

(zk− zk−1), (2.40)

[B] =
1
2

N

∑
k=1

[
Rk

σ

]−1

(1,2,6)
[qp]k

[
Rk

ε

]
(1,2,6)

(z2
k− z2

k−1), (2.41)

[D] =
1
3

N

∑
k=1

[
Rk

σ

]−1

(1,2,6)
[qp]k

[
Rk

ε

]
(1,2,6)

(z3
k− z3

k−1), (2.42)

[H] =
5
6
[F] =

N

∑
k=1

5
6
[
Rk

σ

]−1
(4,5) [qt]k

[
Rk

ε

]
(4,5)

(zk− zk−1). (2.43)

A simple extension of the single ply dependence on offset (2.30), clearly shows that
the constitutive law of a laminate is a polynomial function of 1,x3(0),x3(0)2.
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18 Honeycomb core sandwich composite survey

2.3 Review of existing modeling of honeycomb core sand-
wich composites

2.3.1 Sandwich composite modeling

To predict sandwich composite static or dynamic behavior, researchers have developed
many models. An extensive review of computational models for sandwich panels and
shells has been made by Noor and Burton [7]. Sandwich models are classified into three-
dimensional detailed models, three-dimensional continuum models and two-dimensional
plate and shell models.
Table 2.2 summarizes the different approaches for vibration of honeycomb core sand-
wiches, and gives a non-exhaustive list of corresponding references.

Table 2.2: Models for vibration of honeycomb sandwich plates (or beams)

Models References

2D

Global approximation model
(equivalent single-layer
model)

[19, 16, 20]

Discrete-layer model
(layerwise or zig-zag) [1, 21]

3D
3D continuum model [22, 23, 24, 25]

3D detailed model [22, 25, 26, 4]

The detailed 3D finite element model represents the actual geometry of the honeycomb
core, as well as the adhesive and face sheet layers. Chamis, Aiello and Murthy [22] first
carry out in 1986, with MSC/NASTRAN, a total 3D detailed FEM of metallic honeycomb
core sandwich plate, with the intention of predicting honeycomb core properties. More
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recently Al Bachi [4] developed a similar FEM with ANSYS software. The two detailed
3D FEM quoted have been implemented for static behavior preditions. In addition, Noor
and Burton [26] suggest to use such models for predicting the free-vibration response of
sandwich panels.

In the 2D global approximation model, also called equivalent single-layer model, the
whole sandwich is replaced by a single equivalent layer with global through-the-thickness
approximations for displacements, strains and/or stresses. It corresponds to variations of
the theory presented in Section 2.2.3. Methods can be classified depending of their ability
to describe, with more or less details, the shear phenomenon in soft layers of the sandwich,
such as viscoelastic layer, and honeycomb core. These variations are often fairly strong
so that the approach is difficult to generalize.

The largest class of extensions considers discrete-layer models, or layerwise or zig-
zag models, where the sandwich is divided into several layers and each layer is modelled
based on a chosen theory. In layerwise models, all layers are modeled on the basis of
plate/shell theory using Kirchhoff-Love, Reissner-Mindlin or enriched kinematic assump-
tions.

3D continuum models are multilayer models that use plates or shells to model hard
layers (skins) and volumes to model soft ones (cores or viscoelastic layers). Figure 2.5
shows a typical 3D layered FE model with shell elements for the face sheets and solid
volume elements for the core. In the figure, separate nodes are introduced for the face-
sheets and the core with rigid links between the two. It should be noted, and will be used
in Section 5.5.1, that this has exactly the same kinematics as a model that would consider
an offset for the face sheets, and thus a single layer of nodes. Two layers of nodes are used
here to simplify the meshing and post-processing simulations. This approach, used in the
present work, is found in the litterature to model honeycombs [22, 24] and has also been
used to model thin viscoelastic layers by Plouin [23]. In the following, the designation
Shell-Volume-Shell (SVS) FE model is used for this model.

Figure 2.5: 3D continuum model definition
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20 Honeycomb core sandwich composite survey

In the case of thin viscoelastic layers, Plouin and Balmès [23] have shown that the
first-order shear theory is not adequate to accurately describe the high shear deformations
inside the core, independently of the choice of shear correction factors. The critical aspect
is there to allow the relative in-plane motion of the skins. Clearly the introduction of a
volume layer enables this motion and the model is correct.

Ref. [23] also shows that shear locking for bending motion, typically expected for first
order volume elements is actually not present even for very poor aspect ratios because the
energy is essentially in shear and not bending. This is in good part due to the fact that the
Young’s modulus of the viscoelastic material of the core is usually 103 times lower than
the skins material modulus, as observes Moreira [1]. For honeycombs, the core is much
thicker so that volume elements no longer have poor aspect ratios and locking is not an
issue.

In the case of honeycombs, the level of shear in the honeycomb is also very different
from that in the skin, hence the need for a layered approach arises. Futhermore, the vol-
ume is assumed to be made of an orthotropic material to account for the differences of
properties in various directions generated by the honeycomb manufacturing process. The
estimation of the orthotropic properties will be discussed extensively in Section 2.3.2.

When looking at the kinematics of the SVS model, it is fairly obvious that the com-
pression of the core plays a very minor role so that a single vertical DOF is really needed.
Similarly, knowing the in-plane motion of one layer, one can use the out of plane shears
to estimate the in-plane motion of the next layer using the condition that motion is con-
tinuous at interfaces. This is the basis of the zig-zag or layerwise theory [21]. Using the
Moreira’s notations [1] corresponding to figure 2.6, one thus assumes

{U}k =


Uk = u0(x,y)+ h1

2 βx
1 +

k−1

∑
j=2

h jβ
x
j +

hk

2
β

x
k + zkβ

x
k

Vk = v0(x,y)+ h1
2 β

y
1 +

k−1

∑
j=2

h jβ
y
j +

hk

2
β

y
k + zkβ

y
k

Wk = w0(x,y)


, (2.44)

where

• hk is the thickness of the k-layer,

• u0, v0, w0 are the displacements of the reference layer (k=1),

• Uk, Vk, Wk the displacements field of the k-layer,

• βx
k, β

y
k are slopes of the normal about the y and x axes respectively.
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Figure 2.6: Layerwise theory - Moreira’s kinematic model [1]

Various authors motivate the need for these developments by underlining the lower
degrees of freedom (DOF) number (the classical 5 of a plate for the base layer plus shears
2 per other layer). A model alternating shell and volume, will use 5 per shell layer and
6 per volume layer. But the connections between shell and volume eliminate all the vol-
ume DOFs. As a result, the layerwise model really only has one less DOF for a 3 layers
sandwich. It should however be clear that the difference in formulation is very small and
essentially limited to the numerical integration strategy through the thickness.

The position taken by Balmès for the development of the viscoelastic vibration tool-
box [27] and the underlying research is that the extra work of developing specific mul-
tilayer elements is enormous compared to the marginal gain in computational cost. In
particular models using multiple layers of elements can use standard FEM solvers and
pre/post-processing, while special zig-zag formulations need intensive developments and
have thus only been developed within specialized applications.
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2.3.2 Honeycomb core material properties estimation

For all models, the knowledge of material parameters is an important issue. The reliability
of the response predictions of the computational models for sandwich plates is critically
dependent on the accurate characterization of the properties of the face sheets, core and
adhesive layers, what Noor and Burton have underlined in [7]. In the case of honeycomb
core sandwich, modeling the core is itself a difficulty because of the high heterogeneity
of the structure.

The honeycomb core is a periodic structure in two orthotropic directions. The di-
rection of the ribbon, longitudinal, usually referred by L (length), here x-direction, and
transverse direction, referred by W (width), here y-direction. The orthotropy is due to
the manufacturing process. Indeed after being shaped, the ribbons are bonded, hence the
x-direction cell walls are twice thicker than the y-direction walls. The cells are hexagonal
shaped in this study, but different honeycomb shapes exist.

For reasons of numerical efficiency, classically the honeycomb core is replaced by a
homogeneous equivalent core (volume layer of the SVS FE model). To assess its elastic
properties, sandwich composite can be treated with a global one layer 2D model as Saito
and al. do on an aluminum honeycomb panel [19], or with a multi-layered, 2D or 3D
models. The attention has been focused on the 3D multi-layered approach, whereby the
pure honeycomb core material is considered. The influence of skins and bonding on the
estimation of the equivalent honeycomb core properties will be discussed in Section 3.4.

Figure 2.7: Simplification process for actual cellular scale to equivalent macroscopic
scale, according Hohe’s diagram in [2]
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Honeycomb core equivalent orthotropic properties, will be called effective properties
and referred with a superscript star (?), according to homogenization theory. Thus or-
thotropic material law (2.45) depends on 9 independent material parameters, the Young’s
moduli E?

x , E?
y , E?

z , Poisson’s ratios ν?
yx, ν?

zx, ν?
zy, and shear moduli G?

xy, G?
xz, G?

yz. For
further details, see Berthelot’s book [18].



εx

εy

εz

γyz

γxz

γxy


=


1/E?

x −ν?
yx/E?

y −ν?
zx/E?

z 0 0 0
−ν?

xy/E?
x 1/E?

y −ν?
zy/E?

z 0 0 0
−ν?

xz/E?
x −ν?

yz/E?
y 1/E?

z 0 0 0
0 0 0 1/G?

yz 0 0
0 0 0 0 1/G?

xz 0
0 0 0 0 0 1/G?

xy





σx

σy

σz

τyz

τxz

τxy


(2.45)

The effective parameters are estimated as function of the cells geometric characteris-
tics (a, b, t, t’, θ) and the constitutive material parameters (E, G, ρ, ν).

Table 2.3: Definition of honeycomb core geometric parameters and material properties

Constitutive Material
parameters Geometric parameters

E Young’s modulus a
length of cell side
(L or x-direction)

G Shear modulus b length of sloping cell side

ρ Density θ angle of cell

ν Poisson’s ratio t & t’ thickness of simple
& double cell wall

An extensive literature review on existing methods to determine the equivalent hon-
eycomb core properties is presented by Noor in [7], and more recently by Schwingshackl
in [12].

In 1958, Kelsey [11] first provided a set of equations for G?
xz and G?

yz based on energy
methods applied on the honeycomb cell walls. Gibson and Ashby extended this analytical
approach to derive all the nine orthotropic parameters, and their book [3] is nowadays the
standard reference work in the field. However, the analytical solutions proposed do not
take into account the double thickness walls in the direction of the ribbon (L), and do not
agree well with experimental results, thus numerous researchers still continue working on
improving the estimation of the honeycomb core effective parameters.
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Literature searches bring out three main approaches to estimate core effective properties,
which differ by the size of the representative element chosen to estimate the whole struc-
ture properties:

1. considerations on the deformations of a cell wall, [11, 3, 28, 29],

2. application of homogenization theory on a representative volume element (RVE =
one representative cell) [30, 31, 32, 33, 2],

3. use of numerical tests on a beam or panel (more than one cell in x and y-directions) [22,
4, 26, 25] .

The first approach is the one presented by Kelsey [11], and enriched by Gibson and
Ashby [3]. For the in-plane properties calculation, a hexagonal unit cell is forced to
deform under loadings in x and y directions (see Figure 2.8). The standard beam theory is
used, and the constitutive material of the cells is considered as linear, elastic and isotropic
material.

Figure 2.8: Kelsey, Gibson and Ashby’s model for analytic estimation [3]

To estimate the Young’s modulus E?
x , a stress σx parallel to x is applied to a cell.

The wall deflection is calculated by standard beam theory, under pure bending stress
assumption, and the strain εx is inferred. The Young’s modulus parallel to x is given
by E?

x = σx/εx. The same is done in y-direction to calculate E?
y .

Like the Young’s moduli, the in-plane shear modulus G?
xy is calculated by the ratio

τxy/γxy.
The Poisson’s ratio is deduced by the negative ratio of the strains normal to, and

parallel to, the loading direction, ν?
xy =−εy/εx and ν?

yx =−εx/εy. By reciprocity, εxν?
yx =

εyν?
xy.
Such method cannot be applied for out-of-plane shear moduli. Due to the complexity

of stress distribution in a sheared honeycomb, the exact analytical calculation of G?
xz and

G?
yz is not possible. Theorems of minimum potential energy and minimum complementary

energy allow estimating their lower and upper bounds.

Modeling of a viscoelastic honeycomb panel equipped with piezoelectric patches in view of
vibroacoustic active control design



Review of existing modeling of honeycomb core sandwich composites 25

The lower and upper bounds of G?
yz are equal, but energy methods only give the range

of G?
xz as function of constitutive material shear modulus G and geometric parameters, see

details in ref. [3, 26].
To refine the previous shear moduli estimation, Grediac [28] suggests to take into

account the non uniformity of the stress fields in the cell walls. He considers a basic
cell by FE method (see Figure 2.9). Then, Meraghni [29] adapts Grediac’s approach to
determine E?

z and extends it for a non hexagonal core.

Figure 2.9: Grediac and Meraghni’s representative unit of honeycomb for numerical
estimation

The Young’s modulus E?
z is the constitutive material Young’s modulus E scaled to the

effective area which support the normal loading in z-direction.
The out-of-plane Poisson’s ratios are equal to the constitutive material Poisson’s ra-

tio ν. By reciprocity, ν?
xz = E?

x
E?

z
ν and ν?

yz =
E?

y
E?

z
ν.

The Gibson and Ashby’s formulas, adapted to take the thickness of the inclined cell
wall t ′ 6= t into account, are gathered in Table 2.4.

Table 2.4: Gibson and Ashby’s formulas of honeycomb core stiffness coefficients

In-plane (x,y) parameters Out-of-plane parameters

E?
x E

( t
b

)3 a
b + sinθ

cos3θ
E?

z
E
b

2t + a
b t ′(a

b + sinθ
)

cosθ

E?
y E

( t
b

)3 cosθ

(a
b + sinθ)sin2θ

G?
yz G

t
b

cosθ

a
b + sinθ

G?
xy

E
b3

a
b + sinθ(a

b

)2 ( 1
t ′3 + 2a

bt3

)
cosθ

G?
xz

Up:
G
b

a
b t ′+2tsin2θ

2cosθ
(a

b + sinθ
)

Low:
G
b

(a
b t ′+ tsinθ

)2

cosθ
(a

b + sinθ
)(

2 a
b t ′+ t

)
ν?

xy
(a

b + sinθ)sinθ

cos2θ
ν?

zx ν

ν?
yx

cos2θ

(a
b + sinθ)sinθ

ν?
zy ν
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The Density of the honeycomb core, ρ?, is calculated for a representative volume of
honeycomb, see Figure 2.10. ρ? depends on basic material density ρ and on geometric
parameters,

ρ
? =

ρ(at ′+2bt)
2bcosθ(a+bsinθ)

. (2.46)

Figure 2.10: Representative Volume

The second approach uses homogenization theory on a representative volume element
of the structure, typically one cell of the honeycomb. The principle of homogenization
theory is to perform a change of scale by replacing a complex microstructure Ω (here
cellular structure), by a homogenized effective medium Ω?. The effective medium Ω? is
assumed to be mechanically equivalent at the macroscopic level to the cellular structure
Ω, see Figure 2.7.

Homogenization of periodic media applies to honeycomb core, assumed to be peri-
odic in x and y-directions. The equivalent material properties of a periodic structure can
be evaluated by homogenizing a basic cell ΩRV E , also called representative volume ele-
ment (RVE), see Figure 2.11 for examples of basic cells. In addition to the same external
boundary conditions applied on Ω and Ω?, ΩRV E and ΩRV E? have the same periodic con-
ditions on their displacement fields.
According to this theory, Shi [30] proposes to evaluate the out of plane shear modulus
G?

zx by calculating the average transverse shear stress from the cellular-RVE and the cor-
responding macro-RVE

〈τzx〉=
1
V

∫
Ωh

τzxdxdy (2.47)

〈τzx〉= G?
zxγzx (2.48)

with Ω = h∗Ωh, h the thickness of honeycomb core layer, and V the volume of the RVE.
The method using the strain energy based RVE-procedure is presented by Hohe and

Becker [33] and applied by Gornet [31] with the finite element code Cast3M-CEA for an
application to trimaran structures. The method uses Hill-Mandel’s theorem, according to
which the macroscopic energy of the RVE is equal to the mean of the each constitutive
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element of the RVE energy.

〈Tr(σεσεσε)〉= 1
V

∫
ΩRV E

Tr(σεσεσε)dV =
1
V

∫
ΩRV E?

Tr(σσσ?
εεε
?)dV ? = 〈Tr(σσσ?

εεε
?)〉 (2.49)

Moreover, the macroscopic equivalence of the strain states εi j and ε?
i j is assumed if

the volume average of strain states is equal,

〈
εi j
〉

=
1
V

∫
ΩRV E

εi jdV =
1
Ω

∫
ΩRV E∗

ε
?
i jdV ? =

〈
ε
?
i j
〉
. (2.50)

The homogenization process consists in deforming Ω and Ω? by independent ref-
erence strain states which satisfy the equation (2.50). The total strain energy densi-
ties for both volume, Tr(σεσεσε) and Tr(σσσ?εεε?), are computed. Then knowing the relation
σ?

i j = c?
i jklε

?
kl , between the strain and the stress components, the effective elasticity tensor

c?
i jkl is chosen to satisfy the equation (2.49) for every strain state. See application of this

approach in ref. [33].

Shi’s basic cell [30] Gornet’s meshing of RVE [31]

Figure 2.11: Representative Volume Element for homogenization theory

The third approach is based on numerical tests on a bigger specimen of honeycomb
core sandwich. Despite the expensive computation time of a 3D detailed FE analysis,
numerical simulations are performed, for different boundary and loading conditions, with
aim of elastic core parameters estimation.

Chamis [22] first carries out a total 3D detailed FEM of honeycomb core sandwich.
His approach consists in generating by MSC/NASTRAN four models with computational
levels of sophistication in order to compare them in static conditions. The four models
correspond to those listed in Table 2.2.

Considering a representative volume element (RVE) size of 3D detailed FEM of the
honeycomb, the equivalent properties of the honeycomb core are determined by loading
the model with imposed displacements in each direction at one face while fixing the op-
posite face, as shown on Figure 2.12 along x-direction. Chamis demonstrates that the
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honeycomb core behaves like an equivalent homogeneous anisotropic solid. Such an ap-
proach has been implemented by Al Bachi [4] with ANSYS software on a 40-cells RVE
and compared to the Gibson and Ashby’s parameters formulation. Al Bachi concludes on
a good agreement of the analytic and numerical methods.

Figure 2.12: Numerical simulation of a tensile stress along x-direction on the Represen-
tative Volume Element, according Al Bachi’s diagram in [4]

Similarly, 3D detailed model can be used to predict the equivalent honeycomb core
properties in dynamic conditions.
Noor and Burton [26] present a method using a detailed 3D finite element model, built
in ANSYS, as standard of comparison to assess the accuracy of the equivalent homoge-
neous core model, for the dynamic behavior prediction of the honeycomb core sandwich.
They compare the free-vibration responses predicted by equivalent continuum models,
with properties estimated through the first approach [11, 3], and detailed 3D FE models.
Using the free-vibration frequencies as comparison criterion, they consider infinitely long
panels in x or y-directions and rectangular panels. Their approach consists in considering
the minimum vibration frequencies obtained with several number of cells models.

Schwingshackl and al. recall in [12] that the out of plane shear moduli of the core, G?
xz

and G?
yz, and the Young’s modulus of the skins E f , are the most influent parameters on the

dynamics of the sandwich. This will be verified in Section 3.4.2. Thus, the comparison
of the different approaches focuses on the transverse shear moduli of the honeycomb
core, the quoted approaches are numerically compared in Table 3.4, for the test case of
Aluminum-Nomex specimen (AN20 Table 3.2).
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A numerical evaluation of honeycomb
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3.1 Introduction
The literature review in Section 2.3 showed that the determination of equivalent param-
eters, particularly the transverse shear moduli, was a key difficulty in the modeling of
honeycomb using equivalent shell/volume/shell models.

The many approaches implemented to estimate the equivalent (or effective) parame-
ters use similar principles: a representative volume of honeycomb is submitted to loads
and distortion is evaluated. Strategies to improve precision involve

• taking a bigger representative volume, a sample of several honeycomb cells instead
of a unique representative cell,

• considering the non uniformity of the deformation in the cell wall,

• taking into account the boundary conditions fixed by the face sheets and adhesive
layer, and

• varying the type of solicitation.

The objective of this chapter is to propose a general numerical methodology to evalu-
ate effective parameters automatically, and in the process gain, a better understanding of
the range of validity of the equivalence, for dynamic applications. The principle retained
is to correlate the frequencies of waves propagating in the honeycomb at various wave-
lengths for a detailed 3D FE model and the equivalent SVS FE model. This can be seen
as a numerical homogeneization procedure based on an automated model updating.

The first issue, addressed in section 3.2, is to generate a parametric description of the
honeycomb.

Ideally, an accurate geometry of the honeycomb cell and constituent material prop-
erties are known and are used to generate a detailed 3D FE model. A key aspect is that
the numerical nature of the proposed procedure makes it possible to account for any level
of detail (geometries of the cells, properties of the adhesive, ...). For practical system
level computations, the classical shell/volume/shell (SVS) representation of honeycomb
panels is really used. Section 3.2.1 introduces a sample 3D FE model, that will be used
throughout the chapter, and gives details about the SVS model implementation.

In a numerical homogeneization procedure, constitutive parameters will be varied to
minimize an objective function, the rest of section 3.2 thus details methodologies used to
handle model parameterization.

The principle of homogeneization procedures is to seek parameters that lead to iden-
tical responses in a detailed (3D FEM here) and an equivalent simplified model (SVS
model here). In the many possibilities, it was chosen here to focus on the frequency of
periodic modes, thus leading to the procedure outlined in Figure 3.1.

In a spatially periodic medium, propagating waves of a given wavelength only occur
at certain frequencies and correspond to periodic modes. The parameters of detailed and
simplified models can be adjusted so that these frequencies are equal for both models.
For a unit kinetic energy, the strain energy is equal to the square of the wavelength/mode
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Figure 3.1: Procedure of numerical identification by correlation of periodic modes

frequency. Updating frequencies is thus strictly equivalent to equating strain energy lev-
els, which is more classically given as equivalence in homogeneization procedures. The
novelty of the approach is that multiple wavelengths are considered, so that the results are
not found for a single representative volume but for a range.

Section 3.3 discuses computation and correlation issues associated with periodic modes.
Meshes of a honeycomb beam can be used with simple periodic conditions. But the ap-
proach gives only a few periodic modes and becomes very expensive for refined 3D FEM.
Fourier / Floquet theory allows rapid computations with using the representative volume
element (or twice that volume as classically done to represent complex components).

The equivalence of detailed and simplified models depends on the ability of the sim-
plified model to represent the appropriate behavior. Section 3.4 thus presents an analysis
of constituent properties and their influence on panel vibrations. After detailing the prop-
erties of the chosen panel, the section analyzes the evolution of energy fractions as a
function of wavelength and demonstrates that the only significant parameters for the core
are the density, which can be evaluated from geometric considerations, and the transverse
shear moduli G?

xz,G
?
yz. Other effective parameters are estimated using formulas of Gibson

and Ashby [3], recalled in Table 3.1 with t ′= 2t, but have a very minor impact on periodic
modes. Finally, the influence of glue and local bending in the cell walls is also discussed.

Periodic bending modes in the longitudinal and transverse directions are thus only
dependent on known parameters and the unknown equivalent G?

xz and G?
yz respectively.

As illustrated in section 3.5.1, one can estimate these parameters by a straightforward
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optimization finding the modulus associated with matching periodic mode frequencies.
The validation of the effective parameters is done for a panel in free-free conditions in
Section 3.5.2.

The proposed procedure considers the whole sandwich including skins, section 3.5.3
verifies the range of wavelengths where the effective parameters are indeed independent
of skin properties and thus intrinsic characteristics of the core.

In practice, neither geometry nor properties may be well known. In the present work,
the properties of the Nomex paper and the exact nature of the glue used for bonding
were not known. Furthermore, the variability in the glue filet geometry could not be
evaluated. The process introduced in this chapter would thus eventually be used as a
bijection between effective core properties and constituent parameters, with either being
evaluated from correlation with experiments such as the modal tests that will be presented
in Chapter 4. To illustrate this process, section 3.5.4 discusses a procedure to estimate
glue properties.

3.2 Physical and equivalent models
This section discusses finite element models of the honeycomb and their parameteriza-
tion. A 3D model is introduced to represent basic constituent properties. The classical
shell/volume/shell (SVS) model is introduced for practical simulations. The estimation
of effective parameters of this model is a key issue of this chapter.

3.2.1 3D models of honeycomb core sandwich
The first model, that will be referred to as the 3D FE model, is built to represent the
physical reality (geometry, thickness, material...) as closely as possible, with the intention
of minimizing the modeling errors. This model will be used as reference to estimate
honeycomb properties starting from material and geometric considerations.

Figure 3.2: Definition of the 3D finite element model
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The geometry of the glue is shown in Figure 3.3. Rather than introducing a detailed
geometry, the model considered here privileges a functionally equivalent representation
as a small massless plate extending from the skin neutral fiber to its surface. The explicit
representation of glue elements thus allows a meshing of the honeycomb cell walls and
face-sheets that is compatible and strictly respects the geometry. The free constitutive
parameters Eg and the shell thickness tg can be directly related to the functional values of
shear and bending stiffness, this will be discussed in section 3.4.3.

Figure 3.3: Modeling of adhesive fillet

The second model, shown in figure 3.4 and designated by SVS (shell/volume/shell)
model, with the core composed of a volume element of orthotropic material is then clas-
sically considered since such a model is necessary to allow predictions of large panels.
The estimation of the effective parameters of the orthotropic material from geometric and
material data of the true honeycomb is a key objective of this chapter.

Figure 3.4: Geometry of the Shell Volume Shell (SVS) model

The sandwich face sheets are modeled by isotropic shell, for metallic skin such as
aluminum, or multilayered laminate, for composite skin such as carbon fiber reinforced
composites. Classical laminated plate theory detailed in Section 2.2, is used. As in most
of the literature, Mindlin theory is assumed to be sufficient. In the following, all face
properties are noted with the suffix f . For the simulations shown, the SDT [34] imple-
mentation of MITC4 composite plate/shell elements are used.
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To simplify handling, the face sheets are normally meshed to be compatible with the
underlying core models. In the case of detailed 3D models, one thus uses hexagonal
shapes composed of two quadrangular elements, while in the SVS model regular rectan-
gles are used.

The two FE models differ in the honeycomb core modeling. For the 3D detailed
model, the core is formed of basis hexagonal cells which can be described by the geo-
metric parameters shown in Figure 3.11. The double thickness walls, linked to the manu-
facturing process, where originally flat ribbons are assembled together to form the cells,
is represented. The cell walls are considered as isotropic material. The nominal model
considers one MITC4 element per cell wall although the validity of this assumption is
discussed in section 3.4.4.

For the SVS model, an equivalent homogenized continuum replaced the honeycomb
structure and the adhesive layer. The model is implemented with 8 nodes isoparametric
HEXA8 elements composed with orthotropic material. HEXA8 element are linked to the
MITC4 element of the face sheets by rigid link to simplify the proper handling of the
distinction between surface (where the honeycomb connects to the skin) and neutral fiber
(where the skin is meshed).

As detailed in Section 2.3, the SVS model has been the object of many studies. Ta-
ble 3.1 lists parameters typically considered and which will be used as starting points for
the estimation procedure of this chapter. As stated in Ref. [35], a value of ν∗xy = 1 gives
a constitutive law that is not positive definite. This is clearly non-physical since a passive
material cannot have deformation that produces energy, a value of 0.8 is thus used. The
numerical values are calculated for the test case Aluminum/Nomex specimen (AN20),
whose properties are given in Table 3.2.

Table 3.1: Estimation of Honeycomb core properties [3] (with t ′ = 2t)

In-plane (x,y) parameters Out-of-plane parameters

E∗x E
( t

b

)3 a
b +sinθ

cos3θ
0.148 E∗z 2E t

b

a
b +1

( a
b +sinθ)cosθ

256

E∗y E
( t

b

)3 cosθ

( a
b +sinθ)sin2θ

0.148 G∗yz G t
b

cosθ
a
b +sinθ

18.5

G∗xy E
( t

b

)3 a
b +sinθ

(2 a
b)

2( 1
16 + a

b)cosθ
0.0521 G∗xz

Up: G t
b

a
b +sin2θ

cosθ( a
b +sinθ) 30.8

Low: G t
b

(2 a
b +sinθ)2

cosθ(4 a
b +1)( a

b +sinθ) 30.8

ν∗xy
( a

b +sinθ)sinθ

cos2θ
1∗ ν∗zx ν 0.3

ν∗yx
cos2θ

( a
b +sinθ)sinθ

1∗ νzy ν 0.3

Young’s and shear moduli are given in MPa.
∗ theoretical value, 0.8 used to assure a positive definite constitutive law.
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3.2.2 Model parameterization and reduction

The approach that will be proposed to estimate effective parameters is an automated model
update based on the match of periodic mode modal frequencies. This update requires
computation of periodic modes for a large range of moduli. While, the cost of each
evaluation is limited, the total time needed to evaluate multiple constitutive parameters
can build up rapidly. This section outlines model reduction methodologies that have been
used to speed up mode computations and were derived from Refs [36, 37, 38].

In the considered applications, one deals with variable constitutive parameters. The
constitutive matrix [ΛΛΛ], which represents the constitutive law underlying a FEM formula-
tion can always be written as a linear combination of matrices

[ΛΛΛ(αi)] = ∑
i

αi[ΛΛΛi], (3.1)

The definition of such matrices will be discussed in more detail in sections 3.2.3
and 3.2.4 for plates and orthotropic volumes. The assembled stiffness matrices of ele-
ments based on this constitutive law are always defined by an integration of the form

[K(ΛΛΛ(αi))] =
∫
Ω

[BBB]T [ΛΛΛ(αi)][BBB]dΩ, (3.2)

with strain shape functions derivatives [BBB] depending on the element type. It thus readily
appears that the full finite element matrices follow the same linear combination as that of
constitutive laws

[K(ΛΛΛ(αi))] = ∑
i

αi[K(ΛΛΛi)]. (3.3)

If assembly time is an issue, one can assemble for each [K(ΛΛΛi)], then recompute the
model matrices by using the weighted sum. The main gain in computing time is however
found using fixed basis reduction of parametric models [36, 37, 38]. This principle is to
use a single Rayleigh Ritz basis [T] to approximate modes for a range of design points.
The procedure outlined in Figure 3.5 assumes {q}= [T]{qR} and solves for the reduced
problem. It is important to note that the reduction is a linear combination. One can thus
reduce matrices [K(ΛΛΛi)] once and continue using the linear combination (3.3).
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Figure 3.5: Reduction and Correlation Process

The multi-model reduction approach was used in this work. The underlying idea is
that exact solutions are computed for a limited number of target points. In the present
study extreme values of the αi were used. The vector sets {φφφ1:NM(αi)} found at the
chosen design points are not necessarily independent, an orthonormalization step is thus
performed to generate a basis [T]. A detailed discussion of possible basis generation
procedures can be found in [39]. Given the resulting Ritz basis, approximate solutions
at other design points can then be computed within the subspace generated by the exact
solutions.
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3.2.3 Membrane and shear effects in plates
In this work, shell models are used to represent the skins and the glue. In both cases, it is
useful to distinguish membrane and bending contributions as detailed below.

The classical plate formulation was given in Section 2.2.2. In particular, for isotropic
symmetric plate, it was shown that the extension/bending coupling matrix [B] is a zero
matrix. Hence the constitutive law is written

 N
M
Q

=

 A B 0
B D 0
0 0 F

 εεεm

κκκ

γγγ

, (3.4)

with

[A] =
Eh

1−ν2

 1 ν 0
1 0

(s) 1−ν

2

= Eh.[a] (3.5)

[D] =
Eh3

12(1−ν2)

 1 ν 0
1 0

(s) 1−ν

2

= Eh3.[d] (3.6)

[F] =
Eh

2(1+ν)

[
1 0
0 1

]
= Eh.[f] (3.7)

These expressions clearly show that membrane and shear effects associated with [A]
and [F] are proportional to Eh while bending effects associated with [D] are proportional
to Eh3.

Not all FEM codes allow a direct separation of constitutive law contributions in the
building of the element. It is thus useful to realize that the decomposition can be achieved
by combining multiple elements with realistic properties.

From two thicknesses, one can decompose membrane/shear and bending effects as

[ΛΛΛ(E,h)] = Eh[ΛΛΛ1]+Eh3[ΛΛΛ2] (3.8)

where [ΛΛΛ1] and [ΛΛΛ2] are obtained with

{
ΛΛΛ1
ΛΛΛ2

}
=

[
1.12

E0h0(1.12−1) − 1
E0h01.1(1.12−1)

− 1
E0h3

0(1.12−1)
1

E0h3
01.1(1.12−1)

]{
ΛΛΛ(E0,h0)

ΛΛΛ(E0,1.1h0)

}
(3.9)
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It may also be interesting to represent the same overall properties as a combination of
two plates that only differ in the membrane/shear and third plate that only differs from the
first in its bending properties. One thus seeks to express the constitutive matrix as

[ΛΛΛ(E,h)] =
4Eh
E0h0

([ΛΛΛshell2 ]− [ΛΛΛshell1])+
4Eh3

E0h3
0
([ΛΛΛshell3]− [ΛΛΛshell1]) (3.10)

Taking shell1 (E = E0/4, h = h0, ρ = ρ0), shell2 ( E = E0/
√

2, h = h0/
√

2, ρ = 0)
and shell3 ( E = E0/(4

√
2), h =

√
2h0, ρ = 0) one has the following constitutive laws that

verify the desired separation

[ΛΛΛshell1] =


E0h0

4 [a] 0 0

0 E0h3
0

4 [d] 0
0 0 E0h0

4 [f]

 (3.11)

[ΛΛΛshell2] =


2E0h0

4 [a] 0 0

0 E0h3
0

4 [d] 0
0 0 2E0h0

4 [f]

 (3.12)

[ΛΛΛshell3] =


E0h0

4 [a] 0 0

0 2E0h3
0

4 [d] 0
0 0 E0h0

4 [f]

 (3.13)

This expression does not however separate membrane and shear, but this was not
deemed necessary in the present study. It is reminded that the same linear combination
can be applied to the finite element matrices rather than the constitutive matrices. For the
mass the decomposition, ρshell1 = ρshell and ρshell2 = ρshell3 = 0 ensure that the sum of the
mass is the same as the original mass. But if the implementation of element without mass
was a problem, one can choose ρshell1 = 1

3ρshell; ρshell2 =
√

2
3 ρshell and ρshell3 = 1

3
√

2
ρshell .
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3.2.4 Parametric representation of orthotropic volume laws
For orthotropic materials, the constitutive law is given by



σx

σy

σz

τyz

τxz

τxy


=



1−νyzνzy
EyEz∆

νyx+νzxνyz
EyEz∆

νzx+νyxνzy
EyEz∆

0 0 0

νyx+νzxνyz
EyEz∆

1−νxzνzx
ExEz∆

νyz+νyxνxz
ExEy∆

0 0 0

νzx+νyxνzy
EyEz∆

νyz+νyxνxz
ExEy∆

1−νxyνyx
ExEy∆

0 0 0

0 0 0 Gyz 0 0
0 0 0 0 Gxz 0
0 0 0 0 0 Gxy





εx

εy

εz

γyz

γxz

γxy


(3.14)

with ∆ = 1−νxyνyx−νyzνzy−νzxνxz−2νyxνzyνxz
ExEyEz

.

For honeycomb applications, the key parameters are the out-of-plane shear moduli
Gxz and Gyz. One thus seeks a decomposition that separates the contribution of these
parameters from all the others

[ΛΛΛ(Gyz,Gxz)] = [ΛΛΛ0]+Gyz
[
ΛΛΛGyz

]
+Gxz[ΛΛΛGxz] (3.15)

To avoid numerical problems in the implementation of elements, it is again found
desirable to use realistic materials. One thus replicates the element 3 times with

[ΛΛΛcore1] =


[

C1
3

]
[0]

[0]

G0
yz

4 0 0

0 G0
xz

4 0
0 0 Gxy

3

 [ΛΛΛcore2] =


[

C1
3

]
[0]

[0]

2 G0
yz

4 0 0

0 G0
xz

4 0
0 0 Gxy

3

 [ΛΛΛcore3] =


[

C1
3

]
[0]

[0]

G0
yz

4 0 0

0 2 G0
xz

4 0
0 0 Gxy

3

(3.16)

so that [ΛΛΛcore0] = [ΛΛΛcore1]+ [ΛΛΛcore2]+ [ΛΛΛcore3] corresponds to the core with the maximum
stiffness. Hence, [ΛΛΛcore] = 3[ΛΛΛcore1]+α1([ΛΛΛcore2]− [ΛΛΛcore1])+α2([ΛΛΛcore3]− [ΛΛΛcore1]).

[ΛΛΛcore] =


[C1] [0]

[0]

(3+α1).G0
yz

4 0 0

0 (3+α2).G0
xz

4 0

0 0 Gxy

 (3.17)

Figure 3.6: Decomposition of the core.
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By identification, one deduces Gyz = (3 + α1)
G0

yz
4 and Gxz = (3 + α2)

G0
xz

4 and the
intermediate weighting coefficients are expressed by α1 = 4 Gyz

G0
yz
−3 and α2 = 4 Gxz

G0
xz
−3. It

then appears that

[ΛΛΛ(Gyz,Gxz)] = (9 [ΛΛΛcore1]−3 [ΛΛΛcore2]−3 [ΛΛΛcore3])

+Gyz
4 ([ΛΛΛcore2]−[ΛΛΛcore1])

G0
yz

+Gxz
4 ([ΛΛΛcore3]−[ΛΛΛcore1])

G0
xz

(3.18)

which gives the desired dependence (3.15).
It is then reminded that the same linear combination can be applied to the finite ele-

ment stiffness matrices [Kcore1 ], [Kcore2] and [Kcore3] rather than the constitutive matrices.
For the mass, the decomposition in ρcore1 = ρcore2 = ρcore3 = ρcore/3 is used although
concentration of the mass on one element is possible.

3.3 Periodic wave computations

The method proposed to evaluate effective parameters of the core relies on multiple eval-
uations of periodic modes. A first approach was implemented using classical periodicity
conditions. This is first introduced and allows discussion of pairing issues. Eventually,
the cost of this approach was found to be too significant and computations of periodic
modes based in Fourier/Floquet theory is thus introduced next.

3.3.1 Direct approach with a multiple cells

A first approach to computing periodic shapes is to mesh a model that has the length of the
considered period, Lx along x-direction and Ly along y-direction, and to apply periodicity
conditions on that mesh. The periodicity conditions on the normal modeshapes {φφφ} are

f orally : {φφφ(0,y)}= {φφφ(Lx,y)} ,
f orallx : {φφφ(x,0)}=

{
φφφ(x,Ly)

}
.

(3.19)

Periodic solutions always come in pairs at identical frequencies, corresponding the
real and imaginary parts of the propagating wave. As illustrated in Figure 3.7, there is no
reason for the modes computed in the 3D and SVS models to have a matching phase.
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3D FEM
4094.6 Hz

SVS FEM
4179.0 Hz

3D FEM
4094.9 Hz

SVS FEM
4179.0 Hz

Figure 3.7: Comparison of 3D FEM and SVS FEM periodic modes before preliminary
updating

Every orthogonal combination of the computed modes is however an acceptable modal
basis. To ensure a good correlation, one thus combines pairs of eigenvectors to obtain,
one vector with maximum amplitude at the left edge of the mesh and another to have zero
amplitude. As illustrated in Figure 3.8, one thus seeks ψ such that

{
{φφφmax}= cos(ψ).{φφφ4}+ sin(ψ).{φφφ5}
{φφφ0}=−sin(ψ).{φφφ4}+ cos(ψ).{φφφ5}

(3.20)

The procedure can be applied to both FE models.
{

φφφ
3D
0
}

and
{

φφφ
SV S
0
}

,
{

φφφ
3D
max
}

and{
φφφ

SV S
max
}

can thus be compared and the parameters updating performed.

φ0φ
4

zero value  

φmaxφ
5

maximum value  

Figure 3.8: Original eigenvectors compared to {φφφ0} and {φφφmax} eigenvectors

To evaluate the validity of the effective parameters, it is important to check that they
are independent of wavelength. Rather than computing the first mode of many meshes,
it is tempting to use multiple modes of a longer volume. Indeed, the second periodic
bending corresponds to the first periodic bending of a twice shorter beam. Figure 3.9
illustrates this correspondence of 100 mm and a 200 mm long beams.
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Figure 3.9: Wavelength of periodic modes.

Eventually, the computation of periodic modes for many wavelengths was found to be
very costly. The next section will thus propose the use of Fourier/Floquet theory for the
same objective.

3.3.2 Periodic modes by Fourier/Floquet theory
The objective of this section is to show how the periodic modes can be computed at a
much lower cost using Fourier theory. The section summarizes equations detailed in [40]
for the periodic structures and [41] for cyclic symmetry.

One considers a model whose properties are spatially periodic. For a physical re-
sponse, known at regularly spaced positions n∆x, one can compute its Fourier transform

{U(κ)}=
+∞

∑
n=−∞

{u(n∆x)}e− jκn∆x (3.21)

{U(κ)} is a complex shape defined on the mesh of the repeated cell. One actually uses
two cells to represent the real and imaginary parts of {U}. The wave number κ varies in
the [0, 2π

∆x ] interval (or any interval of the same length, since {U(κ)} is periodic in the
wavelength domain).

Given the Fourier transform {U(κ)}, one can recover the physical motion by comput-
ing the inverse Fourier transform

{u(n∆x)}=
∆x
2π

2π

δx∫
0

{U(κ)}e jκn∆xdκ (3.22)

For a mono-harmonic response (fixed wave number κ), the spatial transform is given
by {u(n∆x)} = Re

(
{U(κ)}e jn(κ∆x)

)
. This property can be used to recover motion on
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any cell based on known values on the first one. As the motion is continuous between
geometric cells, one has {uleft(n∆x)}=

{
uright((n−1)∆x)

}
. In a FEM model, displace-

ments are known at a number of DOFs assembled in a vector {U}. For a given cell, one
defines observation matrices [cL], [cR] to extract corresponding displacements on the left
and right edges. The continuity condition on all interface DOFs can thus be written in the
form [cL]{U(κ)}= [cR]{U(κ)}e− j(κ∆x). Hence, in the real/imaginary format, one has the
constraint equation on nodes of the cell edge[

[cL]− cos(κ∆x)[cR] −sin(κ∆x)[cR]
sin(κ∆x)[cR] [cL]− cos(κ∆x)[cR]

]
2Nr×2N

{
Re(U)
Im(U)

}
= 0 (3.23)

Periodic modes are mono-harmonic solutions of wavelength π/κ. One thus seeks to
solve for [

K−ω2
jM 0

0 K−ω2
jM

]{
Re(U)
Im(U)

}
= 0 (3.24)

with (3.23) verified.
Figure 3.10 illustrates the basic cell and restitution on multiple cells using (3.22) of

modes computed to 1/κ equal to 3 and 17.

Figure 3.10: Periodic modes of the SVS model

One can usefully note that the wavelength L = π/κ covers the full interval of positive
lengths, that

{
u(2π

∆x −κ)
}

=
{

Ū(κ)
}

, and thus that the half spectrum corresponds to a
wavelength of ∆x. Using the property of symmetry allows the use of computations for
wavelengths larger than ∆x only. For forced responses, one solves for {U(κ)} at multi-
ple κ knowing the transform of the applied loads, then uses a numerical approximation
of (3.22) to recover the physical response at any desired position.

The major advantage of using periodic modes is that only two cells need to be meshed
for computations at any wavelength. Compared to the simple periodicity condition with
multiple cells, it is thus much easier to compute modes for large wavelengths (low fre-
quencies). This method was thus preferred when it became available in SDT [34]. The
issue of matching modes discussed in section 3.3.1 remains and is treated similarly.
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3.4 Panel constituent properties and their influence

In this section one seeks to analyze the energy contributions of various constituents of a
honeycomb sandwich panel as a function of wavelength/frequency and glue properties. A
specific study of the 3D FE model and the comparison with the SVS FE model alow to
infer on the limits of the homogeneization.

To illustrate the procedure, a particular panel is chosen and its properties are given
in Section 3.4.1. Section 3.4.2 then analyses energy contributions in the core, skins and
glue layers. Section 3.4.3 further details the influence of glue. Finally local effects in the
honeycomb cell walls are detailed in Section 3.4.4.

3.4.1 Test case properties

The honeycomb sandwich specimen chosen is an Aluminum/Nomex honeycomb, avail-
able at ONERA and designated by AN20, whose properties are given in Table 3.2 and
Figure 3.11. It corresponds to the sample whose test is described in Chapter 4. One refers
to AN20L for beams cut along longitudinal direction and to AN20W along transverse (or
width) direction.

Table 3.2: Definition of AN20 Aluminum-Nomex test beam parameters

Geometric parameters Material parameters

Face sheet h f 0.6 mm ρ f 2.8 103kg/m3

(Aluminum) E f 72.5 GPa

Honeycomb core hh 20 mm ρh 1.38 103 kg/m3

(Nomex) t ( t’=2.t ) 7.62 10−2 mm ( 1.524 10−1 mm ) Ehre f 3 GPa

a, b, θ 2.75 mm, 2.75 mm, π/6 rad

Glue hg = h f /2 0.3 mm ρg 103 kg/m3

(Hypothesis: epoxy) tgre f 0.1 mm Egre f 2 GPa

The main advantage of this specimen is that face sheets properties are well known.
The cells are made of Nomex paper which is composed of short aramid fiber and phenolic
resin. The characteristics of this material are not well known. They can however be
assumed to be invariant by rotation within the paper plane. It thus seems acceptable to
consider the cell wall as a plate composed of isotropic material. This assumption is by
no means demonstrated and shows the difficulty in building a honeycomb model from
constituent properties.

Modeling of a viscoelastic honeycomb panel equipped with piezoelectric patches in view of
vibroacoustic active control design



Panel constituent properties and their influence 45

Geometric parameters

a length of cell side (x1 dir.)
b length of cell side
θ angle of cell
t thickness of simple wall
t’ thickness of double wall

Figure 3.11: Definition of honeycomb core geometric parameters

The glue properties are completely unknown and a discussion will be done in Section 3.4.3.
Densities are those found in literature for such materials and have not been verified. The
influence of the core density will be discussed in Section 3.5.1.

3.4.2 Dominant constituents and wavelength

The objective of this section is the evaluation of energy contributions in honeycomb panels
as a function of wavelength/frequency. For plates, one is interested in separating the
membrane and bending contributions. For orthotropic representations of the core, one
wants a separate evaluation of the energy associated with the xz and yz transverse shears,
which dominate, and a verification that the remaining energy is negligible.

Periodic modes (propagating waves) are typically mass normalized when evaluated.
In the present case, one wants to compare the contributions of constituents at multiple
frequencies. One thus normalizes the strain energy, which is equivalent to compute the
energy fraction in each constituent. Based on the parametric decompositions (3.8) for
isotropic plates and (3.15) for orthotropic volumes one obtains stiffness matrices associ-
ated with specific terms in the constitutive law and computes energy fractions from

E(φφφ) = ∑
I

1
2

αi{φφφ}T [K(ΛΛΛi)]{φφφ}, (3.25)

with {φφφ} the mode shape vector at the considered wavelength. One notes that the consid-
ered decompositions of the constitutive matrices are sums of positive definite matrices, so
that the linear combination is really a sum of energies.

For the 3D FE model, face sheets, glue and honeycomb cells are modeled by isotropic
plates. The strain energy relative to the face sheets and to the glue is separated into A
terms, that refer to membrane/shear effects, and D to bending. As detailed in the dis-
cussion of the constitutive law parameterization done in Section 3.2.3, A terms depend
linearly on product E f .h f for the skins and Eg.tg for the glue and D terms on E f .h3

f and
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Eg.t3
g . Concerning plate representations of the honeycomb core, the distinction between

membrane/shear effects and bending does not seem relevant here, since it is not directly
related to the effective parameters G?

xz and G?
yz. The linear dependence to the cell wall

Young modulus Enomex will be the only one retained.
For the nominal panel (AN20), Figure 3.12 displays for the detailed 3D model the

evolution of the periodic mode frequency as a function of wavelength and the associated
energy contributions. The wavelength is scaled to the length of the unit cell Lcell , with
Lcell = LL for beam along x-direction and Lcell = LT for beam along y-direction, defined
on Figure 3.11. The plot clearly indicates very different regimes. Above 1000 cell lengths
(at low frequencies), the energy is essentially due to membrane effects in the skin. This
is underlying principle of honeycombs, the core only serves to separate the skins which
carry all the load.

Between 3 and 100 cell lengths, the core contains a major part of the energy. Its
properties are thus critical to properly represent motion with relatively short wavelengths.
For isolated panels, such motion only occurs at higher frequencies. When integrated into
frames, structural effects may lead to short wavelength behavior at low frequencies.

Figure 3.12: Top: Energy contribution of constituents, detailed 3D model, bending along
x-direction. Bottom: Frequency of first periodic mode along x-direction. Examples of

mode shapes

For very short wavelengths, very high frequencies, one starts seeing local modes of
the skin and/or honeycomb (see Figure 3.21). Such modes are not really of interest to the
present study which focuses on low frequency panel behavior.
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One interest of the parametric study on the 3D detailed model is the ability to estimate
quantitatively the influence of the bonding. Very few results on its influence have been
found in literature. One can mainly mention Burton and Noor [42] who have studied the
effect of the adhesive joint between the face sheet and the honeycomb core on the static
response of sandwich panels. A 3D detailed FE model which represents in details the
adhesive layer has been implemented with ANSYS code. The authors have shown that
the ratio of the strain energy in the adhesive joint to the total strain energy could reach 11%
for titanium alloy honeycomb sandwich with high-modulus composite for face sheets. For
the considered specimen (AN20), the shear energy in the glue is above 8 % in the 10 to
50 cell lengths range (4kHz to 700Hz). This confirms the findings of Burton and Noor,
and justifies the need for a specific study of the glue presented in the next section.

Figure 3.13 shows a similar plot for the SVS model with separation of strain energy in
the skin, core transverse shear moduli G?

xz and G?
yz and other energy in the core. Similar

regimes are found and one verifies the classical result that almost all the energy in the
core is associated with the G?

xz shear, for bending along x-direction.
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Figure 3.13: Top: Energy contribution of constituents, SVS model, bending along x-
direction. Bottom: Frequency of first periodic mode along x-direction

The parametric study on the detailed 3D model highlights the influence of the adhesive
layer on the dynamic behavior of the honeycomb sandwich beam, while the study on the
SVS model illustrates the classical result on dynamics of sandwich composite, the main
influent parameters are the face sheets Young modulus and the core shear moduli.
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3.4.3 Influence of glue parameters
The detailed 3D model is used in this section, the skin and Nomex paper properties are
assumed be known properly and one seeks to understand under which conditions the glue
influences the dynamic properties significantly.

Figure 3.14 illustrates the evolution of energy fractions in the glue layer for varying
glue moduli. By means of parametric study on the detailed 3D honeycomb, one readily
concludes that the strain energy in the adhesive joint decreases with the increase of the
glue modulus like found in ref [42]. Since 0.2 GPa is a very realistic value for epoxy it
clearly appears that the glue can indeed have a major impact on the short and medium
wavelength dynamics. One will now seek to evaluate the possible impact on the 900 mm
long AN20L sandwich beam.

Figure 3.14: Energy fraction of constituents. Detailed 3D model with 0.2 to 20 GPa glue
modulus

In practice, the exact geometry of the glue volume is not known and shows significant
irregularities. The representation of the adhesive fillet is presented in Section 3.2.1, in
particular Figure 3.3 compares the observed fillet with the model chosen. It was thus
chosen here to use glue shear and bending stiffness as parameters characterizing the glue,
that depend not only on Eg but also on the glue element thickness tg. The reference
deformations used to define these quantities are shown in Figure 3.15.

Figure 3.15: Parameterization and stress on glue element
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The considered model represents glue fillets as shell elements, parameters effectively
entered in the FE code are thus Eg and tg. For a clamped beam and a rigid top surface
shown in Figure 3.15, one can compute a bending moment Mb = Kbendθ and a shear force
Fs = Kshearx and thus relate Eg and tg to equivalent stiffness parameters

Kbend =
Egat3

g

12hg
, (3.26)

Kshear =
Ega3tg

4h3
g

. (3.27)

As the geometry of the real glue volume is not regular (see Figure 3.3), only plausible
limits of stiffness can be given. Kbend and Kshear ranges are evaluated by surrounding the
real glue volume by parallelepipedic element. A typical value of glue Young’s modulus
is Eg= 2 GPa. According to manufacturers data, epoxy adhesive Young’s modulus Eg is
within range

Egmin = 20MPa,
Egmax = 5GPa.

(3.28)

The glue thickness must be higher than the honeycomb cell wall thickness t = 0.762µm
(see Figure 3.11) for the AN20L test beam. Concerning tgmax , it is chosen by observing
glue joint by electron microscopy (see Figure 3.3). The thickness of the skin is 0.6 mm,
it is assumed to be a reasonable value for the upper bound of glue volume thickness.

The height hg of the glue volume is lower than laminate thickness, 0.6 mm and higher
than 0.2 mm. With this approximate data, a realistic stiffness range of the glue is found
(Figure 3.16),

Kshear ∈
[
9.89.105, 7.21.107]N/m

Kbend ∈
[
1.01.10−5,4.12.10−1]N.m/rad.

(3.29)

The chosen meshing procedure represents glue as a shell with hg equal to the skin
half-thickness (0.3 mm), and a as the length of the honeycomb cell side. One thus has a
direct relation between (Kshear, Kbend) and (tg,Eg) based on equations (3.26) and (3.27).
Assuming Eg= 2 GPa and tg = 0.1mm, leads to Kbend/Kshear values in the middle of the
acceptable area (Kshear = 3.84.107 N/m and Kbend = 1.53.10−3 N.m/rad).

The reasonable areas for Kbend , Kshear and Eg, tg are plotted on Figure 3.16, respec-
tively in white and blue. The influence on the first mode frequency of the 900 mm AN20L
beam is shown in the figure and in Table 3.3. The effect is clearly significant, specially
for shear, and underlines the need for proper estimation of glue properties. One should
also note that Figure 3.14 showed that the importance of glue increases with frequency.
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Figure 3.16: Potential glue stiffness parameters KBend and KShear and their influence on
the first mode frequency in free-free conditions

Table 3.3: Influence of KBend and KShear on the first eigenfrequency of AN20L 900mm
beam in free-free conditions

KShear KBend(N.m/rad)
(N/m) 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 1 10

105 83.87 84.47 85.9 94.35 101.4 102.9 103.5 103.7 103.7 103.4
3.7 105 140.2 140.2 140.4 140.5 149.8 153.1 154.0 154.1 154.1 153.8
1.4 106 169 170.7 171.4 173.1 176.6 179.7 180.9 181.1 181.1 180.9
5.2 106 190.5 187.6 187.6 188.4 189.0 190.1 191.0 191.3 191.3 191.3
1.9 107 193.5 194.1 193.5 193.9 194.1 194.5 194.7 194.7 194.7
7.2 107 196.5 195.9 196 196.0 196.0 196.1 196.2 196.3 196.3
2.7 108 197.1 197.1 197.1 197.1 197.1 197.2 197.3 197.3
1 109 198.0 197.8 197.7 197.7 197.7 197.8 198.0 198.0

Frequency (Hz)

3.4.4 Local effects of honeycomb cell wall

The next limitation of the equivalent SVS model is its inability to model local dynamics
within the honeycomb volume. While such dynamics are not desirable, understanding
their occurrence was deemed to be necessary to understand the frequency range of validity
for the considered models.

The local effect of honeycomb cell has been simulated for the AN20 test case, with
fixed skins and fixed edge cells. The meshing of the wall is refined to simulate the local
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bending of cells. Figure 3.17 illustrates the various regimes that can be found for variable
glue stiffness.

Figure 3.17: Local modes as a function of Eg

For very low, probably unrealistic, Eg, one has glue bending and shear modes. For
higher modulus, bending modes of the honeycomb cell wall are coupled with glue de-
formation and occur above 4 kHz. For a stiff glue (Eg = 2GPa), modes are nearly pure
honeycomb cell wall bending and occur around 6kHz.

Those frequencies are above active control frequency band considered. However, that
depends on basic material for honeycomb, here Nomex, on kind of glue and on honey-
comb geometry and thickness. For each panel designed for active control one should
verify that local mode frequencies are out of active control frequency band.

For the determination of effective parameters in the next section, low wavelength pe-
riodic modes will be shown to depend significantly on dynamic deformation in the core
so that the equivalence between 3D and SVS model is not maintained in that frequency
range.
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3.5 Effective core parameters of an aluminum/nomex com-
posite

As outlined in the introduction, the SVS model is needed for large scale simulations, but
relies on the estimation of effective core shear moduli G?

xz and G?
yz which are not direct

material parameters. This section thus discusses a numerical procedure to estimate G?
xz,

respectively G?
yz. The estimation is based on an automated parameter updating, matching

the frequencies of periodic modes of the 3D and SVS models at multiple wavelengths.
Section 3.5.1 illustrates the procedure for the AN20 Aluminum/Nomex specimen and

highlights the importance of wavelength regimes that were described in Section 3.4.2.
Section 3.5.2 validates the parameters obtained for computations on a full panel.
Section 3.5.3 addresses the question, often mentioned in the literature, of whether or not
effective parameters are dependent on skin properties. Finally, Section 3.5.4 discusses a
procedure to separate honeycomb and glue properties that would use multiple tests.

3.5.1 Effective core parameters identified by inverse problem
As illustrated in Section 3.4.2, periodic modes propagating in the x-direction have almost
their energy distributed between the skin and the shear energy associated with the G?

xz term
of the constitutive matrix. Assuming that the skin properties are well known, one can thus
perform a single parameter update of G?

xz in the SVS model to match the frequency of the
corresponding mode in the detailed 3D model. This section illustrates the process and its
limitations.

To avoid problems with skin properties, one uses the same skin models for both the 3D
and SVS model (shown in Figure 3.18). The periodic modes computed for SVS and 3D
FE models are computed for variable wavelengths. y symmetry is assumed to avoid in-
plane shear modes. Simple periodicity in the y-direction is assumed to focus on periodic
bending modes in the x-direction. At low wavelength/high frequency, cell wall bending
occurs and this effect will be discussed in more detail.

Figure 3.18: SVS model with skin geometry of the 3D model

Figure 3.19 illustrates the results of the proposed homogeneization procedure.
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The top graph shows the frequency error on the first bending mode for multiple values of
G?

xz. The bottom graph shows the evolution of the G?
xz value for which the frequency error

is null. The mean value of 26.94 MPa is valid for a fairly large wavelength range but one
has divergence at both extremities. The high wavelength / low frequency divergence was
never explained properly.
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xz associated with no error. Detailed 3D model with 3 by

3 refinement (curves correspond to +0.8% to 0% mass)

Figure 3.13 showed that the core has very limited strain energy and thus significant
(diverging) modulus changes are needed to compensate for small frequency errors. For the
nominal honeycomb of the study (AN20), beyond 100 cell lengths, i.e. below 250 Hz, the
value of the shear modulus has too little influence on the bending energy to be estimated
by this procedure. After many sensitivity studies, including the switch to identical skin
models, it was found that only a mass correction would lead to a constant estimate of the
shear modulus. The figure shows that an arbitrary increase of the core mass by a little
more than 0.5% leads to nearly constant modulus. Figure 3.20 shows that a less refined
model requires a similar although slightly smaller correction.

While the inertia representation by a homogeneous density does seem a proper ap-
proximation of the 3D inertia, the correction needed is extremely small and a second
order effect in the inertia representation is plausible. In practice, honeycomb bonding
procedure clearly induces uncertainties in the mass much larger than 0.5%.
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Figure 3.20: Top: error on the first periodic bending mode frequency for various values
of G?

xz. Bottom: Estimation of G?
xz associated with no error. Detailed 3D model with 1
element per cell wall

A second divergence is always for low wavelength, in the present case below 5 cell
lengths. At low wavelength, cell wall bending first adds to the beam bending, see Figure 3.21
(left), then the cell wall bending mode becomes the first periodic mode that occurs (here
near 10 kHz as shown in Figure 3.21 right). What explains the sharp divergence in case
of 3 by 3 refinement of the cell walls. When using a 3D FE model with only one element
per cell wall, see Figure 3.20, the full divergence disappears but one really cannot rely on
the estimated modulus values below 10 cell lengths.

The presence of the divergences motivates the need for experiments evaluating the
transverse shear for waves certain wavelength ranges. In the present case, the 30 to 200
cells length range (1500 Hz to 100 Hz), seems sufficiently sensitive to core properties
and independent local bending effects. Curves of G?

xz as function of wavelengths, es-
timated for 3D FE model with 1 and 3 elements per cell wall, have been superposed
on Figure 3.22. Besides the divergence below 5 cell lengths, already mentioned, one ob-
serves that the mean value of effective G?

xz obtained with the numerical procedure, for
the 10 to 100 cells length range, only differ by 2.45%. To understand the origin of this
difference, Figure 3.23 shows the relative error on the frequencies computed for the SVS
FE model with refinement from 1 element (shown in Figure 3.18) to a division by 5 ele-
ments, taken as reference. As expected, for small wavelengths, ie high frequencies, the
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Figure 3.21: Mode shape for wavelengths 5.3 cell lengths (left) and 4.2 cell lengths
(right). Local cell wall bending occurrence

refinement is influent because the exact deformation in the core is not linear and can only
be reproduced with multiple elements. For wavelengths above 30 cell lengths the error is
very small and cannot explain differing estimated moduli. The difference in this estimate
is thus associated with the convergence of the 3D model.
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The updating of the shear modulus in transverse direction G?
yz gives very similar re-

sults. The energy fractions show the same transition between skin and G?
yz contributions.

With an adaptation of the core mass, the modulus is constant at 17.82 MPa for all but
very short wavelengths. As for the x-direction, the estimation of G?

yz with refinement of 1
element per cell wall (Figure 3.24) presents a slightly different result from the estimation
with refinement of 3 elements per cell wall, with only 0.45% difference.
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To conclude the section, it is useful to remind that the motivation for the SVS model
is to dissociate honeycomb cell and mesh geometry. Confirming that effective parameters
estimated for a particular configuration can be reused with other meshes is thus important.
Figure 3.25 illustrates the error on periodic wave frequency for elements of various sizes.
The error is only significant for low wavelengths. But then skin bending plays a significant
role there, so that using large elements are expected to induce errors (a 3 cells element for
a 4 cells period is really coarse indeed).
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Finally, Table 3.4 summarizes the formulations found in literature review for effec-
tive shear moduli G?

xz and G?
yz. The numerical values are given for the AN20 Alu-

minum/Nomex specimen. The shear moduli found through numerical estimation are
slightly lower than formulas of the literature, but it is not surprising since the glue, which
is softer than Nomex, is taken into account in the proposed procedure.

Table 3.4: Comparison of quoted estimation of G?
xz and G?

yz

Author Hyp.
G?

xz G?
yz

formula AN20 formula AN20

Kelsey [11] t’=2t
Up: G t

a
1+sin2θ

(1+sinθ)cosθ
30.79

G t
a

cosθ

1+sinθ
18.47

Low: G t
a

1+sinθ

2cosθ
27.71

Gibson
t’=2t

Up: G t
a

1+sin2θ

(1+sinθ)cosθ
30.79

G t
a

cosθ

1+sinθ
18.47

& Ashby [3] Low: G t
a

(2+sinθ)2

5cosθ(1+sinθ) 30.79

Grediac [28] t’=2t G∗low
xz + 0.787a

h (G∗up
xz −G∗low

xz ) 28.04 G t
a

cosθ

1+sinθ
18.47

Meraghni [29] t’=t G t
a

1+2sinθ

2cosθ(1+sinθ) 24.63 G t
a

t+2asinθ

2(1+cosθ)(t+asinθ) 16.69

Shi [30] t’=2t G t
a

2−cos2θ+2∗sinθ

4cos3θ
27.71 G t

2acosθ
18.47

Chamis [22] t’=t G 3t
4acosθ

27.71 G t
2acosθ

18.47

Noor
t’=2t

Up: G t
a

1+sin2θ

(1+sinθ)cosθ
30.79

G t
a

cosθ

1+sinθ
18.47

& Burton [26] Low: G t
a

1+sinθ

5cosθ
11.08

Florens [25] t’=2t num 26.95 num 17.83

AN20: Aluminum-Nomex specimen, unit: MPa
G∗low

xz and G∗up
xz are Kelsey’s ones,

num: direct numerical estimation,
t and t’: cell wall thicknesses (in the ribbon direction and sloping walls).
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3.5.2 Validation on a full panel

The end objective of estimating effective parameters is to allow full panel predictions.
This section thus compares free-free modes of a 0.40 m by 0.20 m rectangular panel
for both the 3D and SVS models. The effective transverse shear moduli of the core,
G?

xz = 27MPa and G?
yz = 17.8MPa, were estimated separately in Section 3.5.1.

Figure 3.26 shows the very satisfactory results of the correlation. Examples of paired
mode shapes are shown on Figure 3.27. Modes 16-17 correspond to a classical switch
between modes. On the SVS, mode 16 has 5 nodal lines along x and 1 along y while
the opposite is true for the 3D FEM. For modes 23-24, one has a combination. In the
SVS model, mode 23 has 4-0 node lines and mode 24, 4-1 node lines. In the 3D model,
the modes are close in frequency (1.6 % difference) and the number of node lines in the
x-direction is unclear for both. This is visible in figure 3.28 were the node line is not in
the middle. Such a dissymmetry can be due to the mesh (that has been built to be periodic
and not symmetric) or to imperfect convergence of the eigenvalue solver.
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Figure 3.26: SVS FEM/3D FEM correlation of a 0.4×0.20 m rectangular panel in free-
free conditions
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Figure 3.27: Example of SVS/3D FEM modes correlated (6th, 14th)

Figure 3.28: Example of SVS/3D FEM modes poorly correlated (23rd , 24th)

3.5.3 Influence of skin on the effective parameters
The procedure proposed in this chapter considers the whole sandwich including skins.
This is consistent with the conclusion of Burton and Noor [26] that the face sheet thickness
has no significant effect on the value of effective parameters. This section seeks to validate
this conclusion, thus showing that the proposed approach is consistent with the many
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methods presented in literature survey of section 2.3.2 that do not consider skins in the
effective parameter estimation process.

As a first evaluation, one varied the skin modulus E f in the range [1/3,1,3]E f0 with
E f0 = 72.5 GPa given in Table 3.2. Honeycomb core and adhesive properties are un-
changed. Figure 3.29 clearly shows that the mean value does not depend on E f (the
change on the estimated shear modulus is lower than 0.2%). The divergence for low
wavelength is very similar, which gives an indication that core dynamics are a major
factor for this evolution.

The divergence for low frequency / high wavelength is significantly influenced by E f .
The analysis of the energy fractions shows that for soft skins, the drop of energy in the
core occurs at lower wavelengths (higher frequencies). The divergence of the estimated
modulus thus appears to be associated with an incorrect representation of the energy dis-
tribution when the energy in the core becomes small.
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Figure 3.29: Top: Energy contribution of constituents for bending along x-direction -
Face sheet Young modulus: E f0/3, E f0 and 3E f0 . Bottom: Estimation of G?

xz associated
with no error - Core mass correction +0.75%

A similar study was performed by varying the skin thickness h f . The low wavelength
drop in core energy is clearly much more sensitive to this parameter, than to the skin
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modulus. This confirms that the associated modes have a strong skin bending nature, as
was already discussed in section 3.4.2. The impact on the estimated modulus is however
quite small which confirms the validity of the homogeneization procedure.
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Hohe [2] characterized the influence of the face sheets constraint on the estimation of
the effective core parameters. His conclusion was that there is an important part of strain
energy stored in the transition zone in the vicinity of the bonding to the face sheets and
that therefore, the thickness of the core has an influence on the homogenization due to the
contribution of the transition zone which could be more or less important. The strain en-
ergy in the honeycomb cells for wavelengths 60, 170 and 500, is displayed on Figure 3.31
and two skin moduli. While the strain energy distribution is clearly not uniform and
significantly depends on the wavelength, a concentration near the bonding zone is only
dominant for the soft skin 500 cell lengths wavelength. This case is also the only one
where the highest energy is not found in the inclined cell walls. The analysis thus seems a
possible starting point to explain the low frequency divergence on the equivalent moduli.
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Figure 3.31: Strain energy distribution in the core for wavelengths 60, 170 and 500. Top
: skin modulus=24 GPa. Bottom : skin modulus = 72 GPa

3.5.4 A procedure to estimate glue properties

The proposed procedure to estimate constitutive parameters is clearly valid but requires
knowledge of constituent properties. Very often and in the proposed application, glue
properties are not well known. This section seeks to address the issue of estimating glue
and core properties separately.

The underlying logic is that modal tests, such as those presented in chapter 4, could
be used to evaluate effective parameters for multiple honeycomb thickness with identical
gluing processes. Based on these estimated effective parameters, the homogeneization
procedure proposed here could be reversed to separate constitutive parameters for the
glue and the honeycomb. The section seeks to evaluate the potential effectiveness of this
procedure to motivate a possible future implementation.

The basic assumption proposed here, is that the effective core shear modulus G?
xz ver-

ifies the inverse rule of mixtures. It can be expressed as function of the pure honeycomb
effective shear modulus, noted G?

h, the equivalent glue layer effective shear modulus,
noted G?

g, and the ratio of their respective thickness to the core thickness. With notations
of the Table 3.2, one has

1
G?

xz
=

hg

hh
.

1
G?

g
+

hh−hg

hh
.

1
G?

h
. (3.30)
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Note that, here the equivalent core is divided into 2 equivalent layers for the bonding
and 1 equivalent layer for the pure honeycomb core. Figure 3.32 gives the results of the
effective parameter estimation for a range of core thicknesses. For the AN20 specimen,
hg is fixed to the value 0.6mm (0.3mm per core/skin bonding), and hh varied from 5 to 25
mm.
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Figure 3.32: Top: Energy contribution of constituents for bending along x-direction -
Core thickness: 5, 10, 15, 20 and 25mm. Bottom: Estimation of G?
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By choosing extreme points, one deduces G?
g = 16.08 MPa and G?

h = 28.2 Mpa.
Table 3.5 shows that the linear (3.30) gives a good accuracy on the effective parameters.
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Table 3.5: Comparison between the estimated core shear modulus G?
xz through numerical

homogeneization and the core modulus calculated from G?
g and G?

h

G?
xz updated [MPa] (3.30) [MPa] Error [%]

25.83 25.83 0
27.15 26.94 -0.76
27.49 27.34 -0.56
27.61 27.54 -0.26
27.66 27.66 0

Figure 3.33: Ratio G?
xz(hh)/G?

xz(5mm) for G?
xz estimated through numerical homo-

geneization and calculated from G?
g and G?

h (3.30)

A further step, that was not implemented, would update constitutive parameters of the
3D model (Eg, Enomex) to match the effective parameters (G?

g, G?
h) found using experi-

ments on a series of samples.
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4.1 Introduction

While chapter 3 introduced a clear homogeneization procedure to estimate effective pa-
rameters from known cell geometry and constituent properties, it also pointed out that
knowledge of these parameters was often a difficulty.

In the target application of panels, the honeycomb cores are made with Nomex paper.
Nomex paper is based on short aramid fiber paper impregnated with phenolic resin. Ex-
tensive literature searches and reviews on mechanical and materials properties of Nomex
paper used for Nomex honeycomb structure are present in Foo et al. [43], but this informa-
tion could not be applied to the honeycomb being tested. In practice the starting point was
thus an initial guess for elastic properties of glue and honeycomb listed in section 4.2.1.
And this is probably a very standard case.

Two types of honeycomb sandwich were tested, Aluminum/Nomex and Carbon/Nomex.
These test beams were cut in sandwich panels available at ONERA and referenced by
AN20 and CN20. The aluminum skin minimizes unknowns in the skin properties, while
the carbon skin is more representative or real applications. Dimensions and initial char-
acteristics are given in section 4.2.1.

The presence of thin layers and geometric transitions that are very difficult to measure
probably imply that the manufacturing process of honeycomb panels has an impact on
the actual properties of their constituents. A methodology to estimate parameters from
samples obtained from real panels is thus needed. Typical methodologies to measure
such information are static and vibration tests.

Earlier experience with Nomex honeycomb at ONERA led to suspect that a viscoelas-
tic behavior would be visible. Viscoelastic materials [44] are known to have frequency
and temperature dependent properties. It was thus chosen to concentrate the proposed ex-
periments on vibration tests, which allow testing at multiple frequencies, in a controlled
environment, which allows analysis of temperature sensitivity. Modal tests are thus per-
formed and model updating is used to estimate material characteristics for unknown con-
stituents.

Test configurations and modal test results are described in section 4.2. The estimation
of effective parameters is then addressed in section 4.3.

4.2 Modal tests

This section presents results of the modal test that were performed for later estimation
of effective core properties. Section 4.2.1 discusses sample properties and section 4.2.2
the measurement configuration. Section 4.2.3 analyses properties of measured transfer
functions and motivates the fact that the quantitative comparison can only be performed
on identified modes, which are given in Section 4.2.4.

Modeling of a viscoelastic honeycomb panel equipped with piezoelectric patches in view of
vibroacoustic active control design



Modal tests 67

4.2.1 Test samples

Helicopter or aircraft trim panels are commonly made with non-metallic honeycomb core
sandwich. Nomex based honeycomb has the major advantage to have a lower density than
aluminum honeycomb. Nomex paper is based on short aramid fiber paper impregnated
with phenolic resin.

Two types of honeycomb sandwich were tested, Aluminum/Nomex and Carbon/Nomex.
These test beams were cut in sandwich panels available at ONERA and referenced by
AN20 and CN20. The aluminum skin minimizes unknowns in the skin properties, while
the carbon skin is more representative of real applications. To highlight the orthotropy
of the honeycomb core, samples were cut in the longitudinal and transverse directions
leading to four AN20L, AN20W, CN20L and CN20W beams. The (L) tests are however
exploited in more detail since they correspond to the configuration instrumented with
piezoelectric patches (see Section 5.3.1).

The dimensions are shown in Figure 4.1. AN20 and CN20 honeycomb sandwich only
differ by their skins, the Nomex honeycomb core and adhesive layers are the identical.

AN20 CN20
Face sheet Aluminum, 0.6 mm Carbon, 1 mm

Core Nomex honeycomb 20 mm

Figure 4.1: Definition test beams

As skin properties of the CN20 Carbon skins were not well know, tensile tests were
carried out on Carbon skin specimens, extracted from a sample of CN20 honeycomb
sandwich. The specimens were 120mm long, 20mm large and 1mm thick, cut in both
longitudinal (L) and transverse (W) orthotropic directions of the sandwich to verify the
isotropic hypothesis. First, the thickness was measured with a microscope for more pre-
cision. For each sample, the thickness were measured in 3 or more points around the
middle of the specimen, where the displacement has been measured during the tensile
test, see Figure 4.2 (left). A force in the [0-3 kN] range was applied to the test specimen
and displacement was measured in the centre. The results of the tests on 3 specimens in
each direction are presented on Figure 4.2 (right). The mean value of the Young modulus
in the longitudinal and transverse directions are EL = 44.2 GPa and EW = 45.7 GPa.
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Figure 4.2: Left: Side view of a Carbon face sheet specimen. Right: Young’s moduli
measured in longitudinal and transverse directions of the sandwich

The isotropy of the carbon fiber reinforced composite face sheet is not perfect, but
seems an acceptable hypothesis. The mean value chosen is 45 GPa.

Table 4.1 summarizes material values taken initially. Face sheet properties are con-
sidered well known, while honeycomb and glue parameters are considered very uncertain
and will be the object of parameter estimation.

Table 4.1: Definition of Aluminum/Nomex and Carbon/Nomex test beams parameters

Geometric parameters Material parameters
(thickness) (density, Young modulus)

Face sheet Aluminum h f 0.6 ρ f 2.8 E f 72.5
Carbon h f 1 ρ f 1.6 E f 45

Honeycomb core Nomex hh 20 ρh 1.38 Ehre f 3
Glue Epoxy hg = h f /2∗∗, t∗g 0.3, 0.1 ρg 1 Egre f 2

Length in mm, angle in rad, density in 103kg/m3, elastic moduli in GPa.
∗ 3D detailed FEM assumption (Figure 3.3).
∗∗ glue modeled on the basis of the AN20 specimen.
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4.2.2 Measurement configuration
Experiments in this chapter were conducted at the MSSMat laboratory of Ecole Cen-
trale of Paris. The experimental setup is shown on Figure 4.3. To ensure the free-free
conditions, the beam is suspended by 3 elastic strings. In the fourth corner the shaker
is attached and hung by springs. The test beam, shaker, transducer and scanning mir-
ror are put in a controlled environment chamber, so that tests can be made at different
temperatures. All beams were tested at 25◦C. Additional tests at 5◦C and 45◦C, were per-
formed for the AN20L Aluminum/Nomex beam. Excitation forces are measured through

Figure 4.3: Left: Experimental setup. Right: Acquisition chain.

a (Bruel and Kjaer) load cell which is screwed trough the whole sandwich using fine hole
(see, Figure 4.4, right). Velocities are measured using a Polytec laser vibrometer. An in
house scanning mirror setup located within the environmental chamber is used to measure
velocity at the various points.

The acquisition is performed using a Photon Analyzer from LDS-Dactron. The signal
sent to the structure is a white noise in the 0 - 3 kHz range created by the analyzer. Load
and velocity are measured and acquired into MATLAB using the Photon Active-X API.
Spectrum estimation and averaging is performed using SDT functionality [34].

Figure 4.4: Left: Experimental setup. Right: Shaker and Force transducer.
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4.2.3 Frequency response functions
This section analyses raw frequency domain measurements to give a feel for the measure-
ment quality and problems. Eventually only modes will be used in the updating process
and these will be presented in the next section.

Figures 4.5 and 4.6 show the Frequency Response Functions measured at sensor 1
for the 4 beams (AN20L, AN20W, CN20L and CN20W) for test performed at 25◦C.
The curves indicate fairly good measurement quality up to 2.5 kHz. There is however a
significant number of poorly excited modes that will be more difficult to identify.

The figures illustrate the shift on the resonance between beams along L or W direc-
tions. This shift is due to the orthotropy of the honeycomb core induced by the manu-
facturing process. This effect confirms the need for modeling the double thickness of the
honeycomb cell walls in the longitudinal direction.
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Figure 4.5: Frequency Responses for AN20L and AN20W beams - sensor 1.

500 1000 1500 2000 2500 3000

10
−2

10
−1

10
0

10
1

Frequency [Hz]

V
el

oc
ity

 [m
/s

/N
]

 

 

CN20L 1z
CN20W 1z

Figure 4.6: Frequency Responses for CN20L and CN20W beams - sensor 1.

Figure 4.7 gives a comparison of FRFs of the AN20L beam at 3 temperatures. The
influence of the temperature is obvious and quite significant, with frequency shifts of the
order of the frequency separation for some modes.
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To confirm the impact on multiple sensors, mode indicator functions are more appro-
priate. Tests at 25◦C and 45◦C have 48 points, while only 39 points are available for the
5◦C test where the measurement quality is significantly lower. Figures 4.8 and 4.9 give
the multivariate mode indicator function (MMIF) [45] for the [200 800] and [200 3000]
Hz ranges. The plots clearly confirm the temperature influence.
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Figure 4.7: Frequency Response at temperatures 5◦C, 25◦C and 45◦C - AN20L beam,
sensor 1z.
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Figure 4.8: Multivariate Mode Indicator Function for the 200 to 800 Hz.
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Figure 4.9: Multivariate Mode Indicator Function for the 200 to 3000 Hz.
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The MMIF is normally at 1 with minima near zero for resonances. The wide band
plot shows that this is true in the 2-3 kHz range but not true at low frequency. The
problem in these measurements was eventually tracked down to the presence of a low pass
filter on the velocity measurement but not on the force. One thus has a significant phase
error that changes with frequency. To allow proper identification, it is thus necessary to
introduce a model that can account for such an error in series with the measurement. The
modes identified in the next section thus use a series of narrow band estimates, which is a
classical method to circumvent the phase problem. The problem was eventually corrected
for piezoelectric tests described in section 5.3.2, but the tests of this chapter could not be
redone.

4.2.4 Identified modes
Modal tests [46, 47] combine measured responses at multiple locations and in the present
case acquired sequentially by displacing the vibrometer beam using the scanning mirrors.
As illustrated on Figure 4.10, resonances seen at all sensors directly give an indication of
mode shapes. In cases with noise or were damping is not very small and modes overlap,
identification of a parametric model that fits the measured responses is needed for proper
determination of mode shapes.
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Figure 4.10: Real part of FRF plotted for all sensors along x.

The pole/residue identification method [48] (base algorithm implemented in SDT [34])
is used here to extract modes from measured transfers. For each pole, the frequency f in
Hz and the damping ratio ζ in % are given. In addition, the quality of the fit is quanti-
fied by the mean relative error on the Nyquist defined as follows. For pole j, and each
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response H, the relative local Nyquist error e j is evaluated by the ratio

e j =

∫ ω j.(1+ζ j)
ω j.(1−ζ j)

|HTest−HId|2∫ ω j.(1+ζ j)
ω j.(1−ζ j)

|HTest |2
. (4.1)

which measures identification error around the resonance of the considered pole. For
multiple responses, the mean over all sensors of the local Nyquist errors is given.

Mean Nyquist errors should be below 10% unless the response is small. Two exam-
ples with different qualities of fit are shown on Figure 4.11. On the top of the figure, local
Nyquist plots show a comparison of the measured and the identified FRF around a peak,
and allow a local evaluation of the quality of the fit, for response at sensor 1. On the
bottom, the local error is plotted for all sensors (Response index). Mode 15 at 1497.5 Hz
of AN20L beam at 25◦C has small Nyquist error for the whole sensors, the mean error
e is equal to 3 %, whereas mode 17 at 1752.9 Hz, has a mean error of 29 % and their
properties cannot be considered as fully reliable (especially for mode shape correlation).

Figure 4.11: Top: measured and identified local Nyquist plots around identified poles,
sensor 1. Bottom: Nyquist error for all sensors. 15th and 17th identified poles of AN20L

beam at 25◦C.

Table 4.2 gives identified modes for AN20L beam at 5◦C, 25◦C and 45◦C. The differ-
ence in the mode numbers can be explained by the fact that some poorly excited modes
are not necessarily visible in each set of transfer functions. In Table 4.3, mode shapes
associated with first bending and torsion modes are plotted and matched at each tempera-
ture.
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One can link the Nyquist error and the quality of the identified mode shape. From Tor-
sion 1n to Bending 3n the error is below or close to 10%, the mode is easily identifiable.
But for Bending 7n and Torsion 4n, the Nyquist error is around or above 20% and the
shapes are not so perfect. For the first bending mode, the high level of e is explained by
the small range [ω1.(1−ζ1),ω1.(1+ζ1)], indeed e is calculated only with two measured
points.

Table 4.2: Identified modes of AN20L beam in free-free conditions at 5, 25 and 45◦C

Test at 5◦C Test at 25◦C Test at 45◦C
n f ζ e f ζ e f ζ e

1 183.33 3.461 16 175.52 0.484 17 174.25 0.867 12
2 359.68 2.723 10 339.90 1.304 8 333.68 0.824 9
3 423.32 0.949 8 414.70 0.479 6 412.80 0.548 8
4 578.64 0.397 15 556.64 0.495 8 547.45 0.449 17
5 581.50 0.945 13 591.46 0.452 8 590.92 0.675 13
6 599.72 0.564 17 622.97 0.326 16 620.39 0.136 25
7 690.14 1.206 9 670.58 0.554 4 663.33 0.490 9
8 711.79 0.911 11 702.57 0.629 6 699.08 0.620 10
9 937.11 1.836 32 740.37 0.470 4 742.78 0.519 10
10 985.74 0.857 5 906.18 0.836 3 925.56 1.170 53
11 1230.77 0.690 4 965.70 0.523 3 958.12 0.553 8
12 1256.65 1.134 8 1210.48 0.294 3 1207.34 0.458 8
13 1307.54 1.127 5 1226.96 0.973 6 1215.33 0.863 10
14 1534.34 1.124 4 1263.98 0.940 4 1263.64 0.749 6
15 1724.13 0.426 35 1497.50 0.783 3 1477.85 0.697 12
16 1795.62 1.387 62 1672.50 0.418 18 1664.49 0.372 24
17 2061.29 1.080 9 1752.89 0.950 29 1731.13 1.219 37
18 2228.97 1.176 11 2011.65 2.393 8 1985.30 0.923 17
19 2332.30 1.411 16 2020.85 0.811 6 2156.88 0.856 8
20 2175.32 0.785 3 2235.44 1.005 11
21 2266.08 0.975 3 2488.96 1.249 26
22 2510.73 0.724 7 2646.45 0.804 52
23 2541.02 0.795 14
24 2669.92 0.806 10

Table 4.3 tracks the evolution of matched modes showing mode frequency (f in Hz),
Nyquist error (n in %), shape, frequency shift (∆f/f in %) and MAC (Modal Assurance
Criterion [49]) with respect to modes at 25◦C.
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Table 4.3: Matched modes of AN20L beam in free-free conditions at 5◦C, 25◦C and 45◦C

Ty
pe Test at 25◦C Test at 5◦C Test at 45◦C

n f e n f e ∆f/f MAC n f e ∆f/f MAC

B
en

d
2n

1 175.5 17 1 183.3 16 4.4 92 1 174.3 12 -0.7 96

To
rs

io
n

1n

2 339.9 8 2 359.7 10 5.8 93 2 333.7 9 -1.8 98

B
en

d
3n

3 414.7 6 3 423.3 8 2.1 97 3 412.8 8 -0.5 98

B
en

d
4n

+
T

2n 7 670.6 4 7 690.1 9 2.9 95 7 663.3 9 -1.1 92

B
en

d
5n

11 965.7 3 10 985.7 5 2.1 97 11 958.1 8 -0.8 93

To
rs

io
n

3n

12 1210.5 3 11 1230.8 4 1.7 95 14 1263.6 6 4.4 67

B
en

d
6n

15 1497.5 3 14 1534.3 4 2.5 98 15 1477.9 12 -1.3 95

To
rs

io
n

4n

16 1672.5 18 15 1724.1 35 3.1 56 16 1664.5 24 -0.5 27

B
en

d
7n

17 1752.9 29 16 1795.6 62 2.4 99 17 1731.1 37 -1.2 95
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To focus in data that will be used for effective parameter updating, bending mode fre-
quencies and shifts are shown in Figure 4.12. The temperature effect is very clear, with
a frequency shift around -1% when heating from 25◦C to 45◦C, and up to 4.4% cooling
from 25◦C to 5◦C. This influence of temperature is typical of viscoelastic behavior as will
be studied in Section 4.3.2.

Figure 4.12: Top: Matched bending modes at 5, 25 and 45◦C. Bottom: Relative error of
bending mode at 5 and 45◦C regard to bending mode at 25◦C

The three other beams were not tested as thoroughly and modal results are only avail-
able at 25◦C. The associated poles are listed in Table 4.4. On the whole, the measurement
and thus also identification is of higher quality for Aluminum/Nomex beams. Thus, al-
though Carbon skins properties have been measured, the update of honeycomb core shear
moduli in section 4.3 was only performed for Aluminum/Nomex beams.
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Table 4.4: Identified modes of AN20L, AN20W, CN20L and CN20W beams in free-free
conditions at 25◦C ( f in Hz, ζ and e in %)

Test AN20L Test AN20W Test CN20L Test CN20W
n f ζ e f ζ e f ζ e f ζ e

1 175.5 0.484 17 168.7 0.734 15 183.2 0.617 14 178.7 1.259 13
2 339.9 1.304 8 265.1 1.426 19 355.5 0.953 4 233.1 0.596 4
3 414.7 0.479 6 375.7 0.474 8 368.5 1.239 7 294.9 0.769 5
4 556.6 0.495 8 518.7 0.730 4 437.7 0.581 7 406.6 0.731 7
5 591.5 0.452 8 623.4 0.536 36 583.3 0.246 17 566.6 0.675 6
6 623.0 0.326 16 774.6 0.327 2 639.0 0.337 13 630.6 0.372 8
7 670.6 0.554 4 800.6 0.008 2 708.0 0.607 2 656.4 0.600 7
8 702.6 0.629 6 829.2 0.693 4 826.4 0.635 8 741.0 0.416 11
9 740.4 0.470 4 1016.1 0.733 3 1004.9 1.368 20 913.7 0.431 6
10 906.2 0.836 3 1111.8 0.621 4 1072.6 0.668 5 1161.0 0.765 5
11 965.7 0.523 3 1232.2 0.459 3 1260.0 0.541 4 1202.1 0.740 4
12 1210.5 0.294 3 1433.6 0.670 12 1357.9 0.716 6 1391.6 0.785 6
13 1227.0 0.973 6 1479.3 0.677 3 1390.7 0.648 5 1622.7 0.741 29
14 1264.0 0.940 4 1656.6 0.175 28 1648.1 0.083 10 1857.5 0.954 10
15 1497.5 0.783 3 1830.9 0.901 5 1832.9 0.939 9 2073.7 1.146 34
16 1672.5 0.418 18 1923.6 0.470 5 1944.8 1.114 10 2321.9 0.830 21
17 1752.9 0.950 29 2032.2 0.950 4 2232.8 0.385 12 2526.0 0.463 21
18 2011.6 2.393 8 2226.3 0.945 7 2363.2 0.922 9 2638.3 0.671 15
19 2020.8 0.811 6 2422.0 0.667 56 2518.3 0.160 9 2788.7 0.303 14
20 2175.3 0.785 3 2622.0 0.936 15 2844.6 0.115 11 3015.1 0.127 16
21 2266.1 0.975 3 2814.6 0.897 28 2922.4 0.226 22 3232.3 0.207 23

4.3 Effective properties of Nomex honeycomb

The objective of modal tests shown in the previous section was to give a reference to allow
estimation of unknown core properties.

Section 4.3.1 addresses correlation principles and gives results for the AN20L and
AN20W beams.

Since one suspects viscoelastic behavior, updating of the core shear modulus is made
mode by mode and for the 3 temperatures using tests on the AN20L beam which are the
most complete. The result, presented in Section 4.3.2, confirms viscoelastic behavior.

Finally Section 4.3.3 discusses fitting an analytic viscoelastic model to the measured
points.
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4.3.1 Test/analysis correlation
The first step of test/analysis correlation is the spatial correlation relating model DOFs
with sensor positions and directions. The construction of observation matrix relating spa-
tial fields on DOFs (39420 DOF in the case of the SVS model) with observation at sensors
(48 laser targets here) is based on the configuration shown in Figure 4.13. The matching
performed in SDT uses the shape functions associated with the underlying elements and
thus does not require coincidence of test and FEM nodes.

Figure 4.13: Sensors, test wire-frame, FEM nodes

Once topology correlation done, one can compare test and FEM modes at sensors
using the Modal Assurance Criterion (MAC [49]). One reminds that a value close to
1 indicates good correlation. To compare transfers, one further needs to define input
locations and affect a damping value to each FEM mode.

To start the correlation, one assumes elastic behavior and uses the effective shear
moduli presented in Section 3.5.1. Sample superposition of test and FEM modes are
shown in Figure 4.14, while Figure 4.15 gives the overall correlation in MAC and fre-
quencies. The correlation is quite good despite the presence of additional test modes
(in-plane modes in particular).

When considering bending modes only in Figure 4.16, the frequency error between
paired modes shows an obvious increase with frequency (from -1.3 % for the first mode
to 20% for the last). Similar results are found at other temperatures and shown in Fig-
ures 4.17 and 4.18.

Figure 4.14: Examples of paired test/analysis mode shapes. Top: Bending mode 5 nodes
at 965.7 Hz. Bottom: Torsion mode 5 nodes at 2175 Hz.
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Figure 4.15: MAC and frequency error at 25◦C. All modes.

Figure 4.16: MAC and frequency error for bending modes at 25◦C.
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Figure 4.17: MAC and frequency error for bending modes at 5◦C.

Figure 4.18: MAC and frequency error for bending modes at 45◦C.

4.3.2 Estimated shear modulus as a function of frequency and tem-
perature dependence

In the considered experiments, the skin properties are well known. As seen in Section 3.4.2,
parameters with most influence on the modal frequencies are thus G?

xz and G?
yz, for the L

and W configurations respectively. Having a single influential parameter, running the
parameter updating loop shown in Figure 4.19 is fairly direct and can be done for each
bending mode in the test. In practice, the procedure can be somewhat lengthy so that
reduced models described in Section 3.2.2 were used.
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Figure 4.19: Process of parameter estimation by updating

The result of the procedure is a modulus value at each of the modal frequencies shown
in Figure 4.20. Figure 4.12 showed a deviation of the bending frequencies increasing
with frequency and decreasing with temperature. This translates here into a modulus with
the same trends, which are typical for viscoelastic materials [44, 50]. In the considered
experiments (see Table 4.2), the modal damping in not very well estimated and could not
be used for a relevant validation of the viscoelastic behavior.

Figure 4.20: Equivalent shear modulus G?
xz of the core (honeycomb+glue) as a function

of frequency and temperature.

To gain a better understanding of possible errors in this procedure, Figure 4.21 gives
the energy fraction associated with the G?

xz and G?
yz shear moduli in the test bandwidth.

One clearly sees the bending modes with energy associated with G?
yz increasing (20 %

for the first mode, 48 % for the second, ...) and the torsion modes having decreasing
energy (93 % for the first mode, ...). Above 2 kHz more complex shapes are found and
the energy fraction associated with G?

yz starts to pick up. The relatively small energy
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fraction in the first mode may cast some doubt on the modulus value estimated for the
first mode in Figure 4.20. Re-use of the estimated law on the CN20 beam equipped with
piezoelectric patches will however confirm the value (Section 5.3.3).
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Figure 4.21: Energy fraction relative to G?
xz and G?

yz shear moduli for AN20L test beam.

One has thus demonstrated a modulus change from low to high frequency is nearly a
factor 2 and one has a strong variation in the 0-1 kHz range which is the low frequency
range where active control is typically considered to limit vibrations levels, when passive
mechanisms are not yet efficient. To predict responses at all frequencies, an expression of
G as a function of frequency is needed and a procedure is discussed in the next section.

4.3.3 Analytic representation of the complex modulus
Viscoelasticity problems can be solved as elasticity problems with a complex modulus
that depends on frequency. This property is known as the elastic/viscoelatic equivalence
principle [51, 44]. The complex modulus G is characterized by a constant storage moduli
G′ and loss factor η,

G(s) = G′(1+ jη) (4.2)

A four parameter fractional derivative model, function of the Lapace variable s,

G = Gmax +
Gmin−Gmax

1+( s
ω0

)α
, (4.3)

is known to allow a compact representation of the frequency dependence of the modulus
for many viscoelastic materials [52, 50]. The high Gmax and low Gmin frequency moduli
correspond to real asymptotes, while the ω and α coefficients influence the frequency of
the maximum loss factor and its value, which are related to the slope of the real modulus
and the point at which this slope is maximum.
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A simple non-linear least squares matching the analytic expression of G′ = R e(G(s))
and the estimated moduli at test frequencies, was used to estimate the four parameters
in (4.3). The optimization was performed using the MATLAB fminsearch function.
Results for both moduli (based on the AN20L and AN20W tests) are shown in figure 4.22.
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Figure 4.22: Experimental transverse shear moduli G∗xz and G∗yz updated and viscoelastic
law fitting. AN20L, CN20L and AN20W beams

Figures 4.23 and 4.24 show the test/analysis correlation performed with the estimated
G?

xz( f ) and G?
yz( f ). Correlation for the initial constant modulus is shown in Figure 4.23

for the AN20L and figure 4.24 for the AN20W. Clearly the frequency dependent modulus
gives much better correlation in both configurations.

Figure 4.23: Test/analysis correlation with updated G∗xz at 25◦C - MAC and frequency
error for bending modes.
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Figure 4.24: Test/analysis correlation with G∗yz = 18 MPa (top) and updated G∗yz (bottom)
at 25◦C - MAC and frequency error for bending modes

The effective core parameters, updated by test/analysis correlation on Aluminum/Nomex
specimen, should be characteristic of the core itself. Thus, the frequency dependent ef-
fective parameters were reused for Carbon/Nomex sandwich beam. Due to sequencing of
the tests, this validation is done for the piezoelectric excitation to laser measurement that
will be introduced in the next chapter. Figure 4.25 clearly indicates that for a modulus
adapted at 700 Hz, resonances below are too high (the modulus is overestimated), while
resonances above are underestimated (the modulus is too low). Using the analytic repre-
sentation of the shear modulus G?

xz( f ), predictions fit the measured responses extremely
well.

Note that the transfer is obtained by using (3.15) to build the dynamic stiffness at
each frequency and the fixed basis reduction procedure outlined in figure 3.5 to speed
computations.
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Figure 4.25: Test/Analysis Frequency Response Functions of a Carbon/Nomex honey-
comb beam - Piezo 1 actuator - Laser sensor 6

The good quality of end prediction should not occult the fact that these tests were not
very well calibrated. To illustrate the issue, one generated multiple estimates of G(s) for
variations in the CN20 skin properties considered to be within realistic error bounds. The
values shown in Figure 4.26, clearly demonstrate the need to test skin properties with high
accuracy.
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Figure 4.26: Influence of skins thickness on the viscoelastic law of experimental trans-
verse shear modulus G∗xz for CN20L beam, h f = 1mm and 0.83mm, compared to G∗xz for

AN20L beam
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5.1 Introduction

Piezoelectric materials are ceramics with the property of producing electric charge un-
der external force. This direct effect of piezoelectricity is used for sensing. The reverse
property, which consists of creating a strain in the medium under electric field, is used
for piezoelectric actuators. For more details on piezoelectric materials, see Preumont’s
handbook [10]. Rectangular piezoelectric actuators and sensors are classically used for
active structural acoustic control (ASAC) on honeycomb sandwich composite trim panels.
Other shapes of patch can be found in literature, but only rectangular patches available on
the market [53] are studied here.

The issue of this chapter is to understand how a piezoelectric patch coupled with the
sandwich behaves and how to improve its efficiency. With this intention, The CN20L
sandwich specimen with Carbon fibers reinforced composite for skins and Nomex based
honeycomb core (described in Section 4.2.1), equipped with piezoelectric patches, is
modeled and tested. Preliminary updating of the CN20L beam have been made, pre-
sented in Section 4.3.

Section 5.2 recalls existing finite element formulation of piezoelectric medium, devel-
oped by Piefort [9]. This FE formulation is implemented in the existent SVS FE model of
honeycomb core sandwich composite in MATLAB/SDT. In Section 5.3 the FE analysis of
CN20L beam equipped with 3 piezoelectric patches is compared with vibrating tests. One
searches to validate the FE model of honeycomb sandwich with integrated piezoelectric
patches by comparing the modal behavior and frequency responses.

Experiments have revealed a local behavior of the piezoelectric actuator. Section 5.4
addresses this local phenomenon, and in particular the ability of the FE model to repro-
duce the behavior in the vicinity of the actuator. Some additional experiments with refined
measuring grid have been led to validate those observations.

In Section 5.5, one is interested to the use of a simplified FE model, which is compared
with the previous FEM, for industrial purpose.

5.2 Models of piezoelectric medium

A piezoelectric patch bonded on plate structure is clasically modeled by a multi-layer
approach [9]. Using the multi-layer laminate theory, without piezoelectric behavior, sum-
marized in Section 2.2.3, the electro-mechanical coupling of the piezoelectric medium
is first introduced (Section 5.2.1). Finite element (FE) approach is applied to piezoelec-
tric multi-layer laminate and leads to state space model (Section 5.2.2). Then, theoretical
resolution of this FE problem is presented in Section 5.2.3. Models presented in this
section are implemented in MATLAB/SDT and validated on honeycomb beam specimen
equipped with piezoelectric patches, Midé [53] QuickPack QP20W, bonded on the skins
(Section 5.3).
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5.2.1 Multi-layer plate formulation with piezoelectric laminate
In this section, the global multi-layered laminate theory is used for piezoelectric laminate.
The layers are constituted with piezolectric material, then electrical equations that gov-
erns the medium and their coupling with the linear elasticity have to be considered.

From this section, the notations of the IEEE standard [54] are used,

Table 5.1: IEEE standard and elasticity notations

Elasticity IEEE Std.
Stress (N/m2) {σσσ} {T}

Strain {εεε} {S}

One recalls that engineering notation is used for strain vector (see Section 2.2.2).
In the scope of the piezoelectric patch FE model, the following assumptions are set,

see [54] for justification

• quasi-electrostatic approximation,

• thermoelectric coupling neglected,

• linear piezoelectricity,

• uniform electric field and displacement across the thickness and oriented along the
normal direction to the multilayer mesh-plane.

Under these hypotheses, the electrical and mechanical constitutive equations for 3D
piezoelectric material are coupled [55]

{S}=
[
sE]{T}+[d]T{E} (5.1)



S11
S22
S33
S23
S31
S12


=


s11 s12 s13 0 0 0
s12 s22 s23 0 0 0
s13 s23 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66


︸ ︷︷ ︸

Orthotropic material compliance



T11
T22
T33
T23
T31
T12


+


0 0 d31
0 0 d32
0 0 d33
0 d24 0

d15 0 0
0 0 0


︸ ︷︷ ︸

PZT piezoelectric coupling


E1
E2
E3



{D}= [d]{T}+
[
εεεT]{E} (5.2)
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 D1
D2
D3

=

 0 0 0 0 d15 0
0 0 0 d24 0 0

d31 d32 d33 0 0 0


︸ ︷︷ ︸

PZT piezoelectric coupling



T11
T22
T33
T23
T31
T12


+

 εT
11 0 0
0 εT

22 0
0 0 εT

33


︸ ︷︷ ︸

Permittivity

 E1
E2
E3


where, {D} is electric displacement (C/m2), {E} is the electric field (V/m), {S} the strain
and {T} the stress (N/m2). The matrix

[
sE] is the compliance under constant electric

field, [d] the piezoelectric constants (m/V or C/N) and
[
εεεT] is the dielectric constants

under constant stress matrices.
In equations (5.1) and (5.2), directions 1 and 2 coincide with the orthotropic directions

of the piezoelectric sample, and direction 3 with the direction of the polarization. For PZT
material, considered here, the piezoelectric coefficients verify d32 = d31 and d24 = d15.

Equations (5.1) and (5.2) can be rewritten in the single matrix form{
T
D

}
=
[ [

cE] −[e]T

[e]
[
εεεS] ]{ S

E

}
, (5.3)

or to have a symmetric constitutive law [56]

{
T
D

}
=
[ [

cE] [e]T

[e] −
[
εεεS] ]{ S

−E

}
. (5.4)

The matrix
[
cE] refers to the stiffness when the electric field is constant. [e] relates the

electric charge per unit area {D} to the strain under a zero electric field (short-circuited
electrodes), and is linked to the piezoelectric constants matrix [d] by

[e] = [d]
[
cE]. (5.5)[

εεεS] is the permittivity under constant strain matrix and verifies[
εεεS]=

[
εεεT]− [e][d]T . (5.6)

The Mindlin’s first order plate theory assumptions are summarized here. In addition,
piezoelectric hypothesis are given, to obtain the constitutive equations of the piezoelectric
Mindlin shell, formulated by Piefort [9].

Plate formulation consists in assuming one dimension, the thickness along x3, negligi-
ble compared with the surface dimensions. Thus T33 = 0 on the bottom and upper faces,
and assumed to be neglected throughout the thickness. Under Mindlin assumptions, a
fiber normal to the mid-plane remains straight after deformation but no longer orthogonal
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to the mid-plane (see Figure 2.1). The transverse shear strains are assumed to be con-
stant through the thickness. With IEEE Std. notations and by gathering the in-plane and
out-of-plane strains, one writes for each layer k

In-plane {S}k = {Sm}k + z{κκκ}k,
Out-of-plane {γγγ}k

(5.7)

where {Sm}k is the mid-plane strain of layer k. {Sm}k, {κκκ}k and {γγγ}k are related to the
displacement field according to the kinematic model (2.17) (where {εmεm

εm}k = {Sm}k). In
the same way, one notes

In-plane {T}k = {T11 T22 T12}T
k ,

Out-of-plane {τττ}k = {T23 T13}T
k ,

(5.8)

and the reduced in-plane elastic coefficients set up in-plane stiffness matrix
[
qE

p
]

k (in (2.11)
qi j for i, j = 1,2,6) and transverse shear elastic coefficients set up transverse shear stiff-
ness matrix

[
qE

t
]

k (in (2.11) qi j for i, j = 4,5), see Section 2.2.2 for details on reduced
stiffness matrix.

It is assumed that the electric field {E} and displacement {D} are uniform across the
thickness of each layer and oriented along the normal direction to the multilayer mesh-
plane (direction x3), one has

{E}k =


0
0

Ek =−φk
hk

, {D}k =


0
0

Dk

 , (5.9)

with φk the difference of electric potential across the layer and hk the layer thickness.
Finally, the linear piezoelectricity for each piezoelectric layer k provides that the

piezoelectric principal axes are parallel to the structural orthotropy axes and that the pol-
ing direction is the direction x3. And it is assumed that no shear strain is induced by
a transverse electric field (e34 = e35 = e36 = 0) which is the case for PZT piezoelectric
laminate.

By simplification of (5.4), and using the notations introduced above, one obtains the
constitutive equations for the piezoelectric layer k

{T}k =
[
qE

p
]

k{S}k−{e31 e32 0}T
k Ek, (5.10)

{τττ}k =
[
qE

t
]

k{γγγ}k, (5.11)

Dk = {e31 e32 0}k {S}k + εkEk. (5.12)
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Notice that, for PZT material, non zero elements of matrix [e] are e31, e32, e33, e24,
e15, and since E1 = E2 = 0, no shear strain is induced by the transverse electric field, and
−[e]T{E}= {−e31 − e32 − e33 0 0 0}T E3.

From the definition of the stress resultants, given in equations (2.18) to (2.20), and
by including electro-mechanical coupling, the formulation for piezoelectric plate relates
{N}, {M}, {Q} and {D} to {Sm}k, {κκκ}k and {γγγ}k and {φφφ}k,

{N} =
∫

z {T}dz =
∫

z
[
Rk

T
]−1
(1,2,6)

[
qE

p
]

k

[
Rk

S
]
(1,2,6){S}k−

[
Rk

T
]−1
(1,2,6) {e31 e32 0}T

k Ek dz

= ∑k
∫ zk

zk−1

[
Rk

T
]−1
(1,2,6)

[
qE

p
]

k

[
Rk

S
]
(1,2,6) ({S

m}k + z{κκκ}k) dz

−∑k
∫ zk

zk−1

[
Rk

T
]−1
(1,2,6) {e31 e32 0}T

k Ek dz,

(5.13)

{M} =
∫

z z{T}dz

= ∑k
∫ zk

zk−1

[
Rk

T
]−1
(1,2,6)

[
qE

p
]

k

[
Rk

S
]
(1,2,6)

(
z{Sm}k + z2 {κκκ}k

)
dz

−∑k
∫ zk

zk−1
z
[
Rk

T
]−1
(1,2,6) {e31 e32 0}T

k Ek dz,

(5.14)

and

{Q} =
∫

z {τττ}dz

= ∑k
∫ zk

zk−1

[
Rk

T
]−1
(4,5)

[
qE

t
]

k

[
Rk

S
]
(4,5){γγγ}k dz.

(5.15)

Dk = {e31 e32 0}k
[
Rk

S
]
(1,2,6){S}k + εkEk

= {e31 e32 0}k
[
Rk

S
]
(1,2,6) ({S

m}k + zmk{κκκ}k)+ εkEk

(5.16)

Note that
zk∫

zk−1

z
hk

dz =
zk−1 + zk

2
= zmk.[

Rk
T
]

(see (2.32)) and
[
Rk

S
]

(see (2.33)) are the rotation matrices, associated to the
angle θk, relating the stress and strain in any structural basis to the stress and strain in the
piezoelectric material principal basis,

[
Rk

T
]
=


[
Rk

T
]
(1,2,6) [0]

[0]
[
Rk

T
]
(4,5)

 ,
[
Rk

S
]
=


[
Rk

S
]
(1,2,6) [0]

[0]
[
Rk

S
]
(4,5)

 (5.17)
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One has
[
Rk

T
]−1 =

[
Rk

S
]T , thus

[
Rk

T
]−1
(1,2,6) {e31 e32 0}T

k = ({e31 e32 0}k
[
Rk

S
]
(1,2,6))

T .

And {e31 e32 0}k
[
Rk

S
]
(1,2,6) will be written {Gk}. One recalls

[
Rk

S
]
(1,2,6) =

 cos2θk sin2θk sinθkcosθk
sin2θk cos2θk −sinθkcosθk

−2sinθkcosθk 2sinθkcosθk cos2θk− sin2θk

 , (5.18)

In a compact form, Mindlin piezoelectric plate formulation is



N
M
Q
...

Dk
...


=



A B 0 · · · hk{Gk}T · · ·

B D 0 · · · zmkhk{Gk}T · · ·

0 0 F · · · [0] · · ·

...
Gk
...

...
zmkGk

...

...
0
...

. . . 0
−εk

0
. . .





Sm

κκκ

γγγ

...
−Ek

...


. (5.19)

If needed it is possbile to use the matrix [H] = 5
6 [F] instead of [F], where 5

6 is a shear
correction factor, to improve the model of the shear effect. The matrices [A],[B],[D],
[F] are respectively the extensional stiffness, the extension/bending coupling, the bend-
ing stiffness and the transverse shear stiffness matrices, classical stiffness matrices for a
composite laminate given by (2.40) to (2.42).

5.2.2 Finite element formulation of a piezoelectric plate
Given the constitutive law (5.19), the principle of virtual work can be simply used to ex-
tend a classical shell element to include one additional electric DOF, φk, per piezoelectric
layer which is assumed constant over the element, and in SDT is common to all elements
covered by an electrode (the potential is associated with a single electric DOF for all
elements of a given property).

The displacement field at any integration point, identified by coordinates (r,s) in the
reference element is related to displacement at nodes by the means of shape functions

{u(r,s)}=
[
NNN u(r,s)

]
{qi}, (5.20)

The strain vector and the electric field can then be related to the nodal displacements
and potential by the shape functions derivatives [BBBu] and division by thickness for the
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electric displacement
[
BBBφ

]


Sm(r,s)
κκκ(r,s)
γγγ(r,s)
−Ek

=
[

BBBu(r,s) 0
0 BBBφ

]{
qi
φφφk

}
, (5.21)

or giving all the components



Sm
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κxx
κyy
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γxz
γyz
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−Ek
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

=
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0 0 N,x 0 N
0 0 N,y −N 0

. . . 0
0 1

hk

0 . . .





ux
uy
w
θx
θy
...

φk
...


(5.22)

where N,x, N,y are the derivative of the shape functions with respect to cartesian co-
ordinates at the current integration point and {qi} are the DOFs at element nodes.

For each element the element formulation is obtained by integrating over the element
the work of generalized strains (5.22) for generalized stresses (5.19). The result takes the
form

[Muu]e{q̈i}+[Kuu]e{qi}+
[
Kuφ

]
e{φφφi} = {Fmech}e[

Kφu
]

e{qi}+
[
Kφφ

]
e{φφφi} = {Qk}e

(5.23)

with [Muu]e the element mass (electro-statics are assumed so there is no mass for
electric terms),

[Muu]e =
∫
Ve

ρ
[
NNN u
]T [NNN u

]
dVe, (5.24)

[Kuu]e the mechanical stiffness matrix,

[Kuu]e =
∫
Ve

[BBBu]
T [cE][BBBu]dVe, (5.25)

[
Kuφ

]
e the piezoelectric coupling matrix,[

Kuφ

]
e =

[
Kφu

]T
e =

∫
Ve

[BBBu]
T [e]T

[
BBBφ

]
dVe, (5.26)
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and
[
Kφφ

]
e the capacitance matrix,

[
Kφφ

]
e =−

∫
Ve

[
BBBφ

]T [
εεεS][BBBφ

]
dVe. (5.27)

For Mindlin piezoelectric plate, the matrices [Kuu]e,
[
Kuφ

]
e and

[
Kφφ

]
take the fol-

lowing forms

[Kuu]e =
∫
Se

[BBBu]
T

 A B 0
B D 0
0 0 F

[BBBu]dSe (5.28)

[
Kuφ

]
e =

[
Kφu

]T
e =

∫
Se

[BBB]T

 · · · {Gk}T · · ·
· · · zmk{Gk}T · · ·
· · · 0 · · ·

dSe (5.29)

[
Kφφ

]
e =−Se


. . . 0

εk/hk

0 . . .

 (5.30)

with {Gk}= {e31 e32 0}k
[
Rk

S
]
(1,2,6) and Se the element area.

or giving all the components
{Fmech}e is the external mechanical force,

{Fmech}e =
∫
Se

[
NNN u
]T{PS}dSe +

[
NNN u
]T{PC}. (5.31)

If the software implementation considers potentials φk that are constant over elec-
trodes, and thus common to multiple elements, Qk corresponds to the total charge on the
electrode and is equal to the integral of the electric displacement over the electrode area,

Qk =
∫
Se

DkdSe (5.32)

The non uniformity of the charge under an electrode will be illustrated later (see Section 5.3.4,
Figures 5.16 to 5.18).
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5.2.3 Resolution

Once assembled the model takes the form[
Zuu Kuφ

Kφu Kφφ

]{
qmech

φφφk

}
=
{

Fmech
Qk

}
(5.33)

with the classical dynamic stiffness [Z] = [M]s2 +[K].
When simulating the response, one needs to consider sensor and actuator configura-

tions.
Piezoelectric patches used as sensors have a charge that remains zero (open circuit

mode). One can thus condense the electric DOF. Indeed, one considers an electrostatic
behavior (no Mφφ or Mφu) and assumes Qk = 0, one thus has

{
qmech

φφφk

}
=
[

I
−
[
Kφφ

]−1[Kφu
] ]{qmech}= [T]{qmech} (5.34)

This relation can be used to eliminate the electric contribution from the system equa-
tions which become

[T]T [Z][T]{qmech}= [T]T{F} (5.35)

From this condensation it clearly appears that a patched used as sensor induces a shift
of frequencies from a configuration without piezoelectric coupling.

Piezolectric patches used as actuators have a difference of potential φk that is enforced.
One can thus use the electric part of (5.33) to determine the charge

{Qk}=
[
Kφu Kφφ

]{ qmech
φφφk

}
(5.36)

and consider the system equations with no piezoelectric coupling and an electric load

[Zuu]{qmech}= {Fmech}−
[
Kuφ

]
{φφφk} (5.37)

It clearly appears that the dynamic stiffness of this configuration, is that of the purely
mechanical model with no piezoelectric coupling. The modes of [Zuu] correspond to the
case with φk set to zero. In other words, the actuator configuration leads to closed circuit
modes.

In the resolution process implemented in [34], electrodes are declared to be either
open or closed circuit which allows a condensation or elimination of electrical DOFs
before computation of modes and static correction for inputs which are used to build the
state-space model.
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5.3 Validation on the honeycomb beam actuated by piezo-
electric patch

In this section, the FE model of honeycomb beam CN20L with piezoelectric patches
QuickPack Midé QP20W, implemented in MATLAB/SDT is compared with tests.

The test case and the setup are first presented in sections 5.3.1 and 5.3.2.
A test/analysis correlation has been made, and the modal behavior of the beam is

compared, considering or not the viscoelastic law of the honeycomb core (Section 5.3.3).
A specification of the QuickPack Midé QP20W is that it is made of a stack of two

piezoelectric layers. It is thus possible to plug the electrodes to favor membrane or bend-
ing behavior of the patch depending on the effect expected on the structure actuated.
The Section 5.3.4 focuses on the validation of the FE model, with respect to tests, for the
specific membrane or bending actuator of the patch QP20W.

5.3.1 Test case characteristics

The beam tested in this chapter is the CN20L Carbon/Nomex honeycomb sandwich beam,
900mm long, 45mm large and 22mm thick, equipped with 3 piezoelectric patches Quick-
Pack Midé QP20W. This beam have been previously tested without patch, the results of
the estimation of the equivalent core parameters as a function of frequency are given in
Chapter 4. The beam properties are recalled in Table 5.2, the piezoelectric patch ones are
given in Table 5.3.

Table 5.2: Definition of Carbon/Nomex composite properties

Geometric Parameters Material Parameters
Carbon face sheet h f 1 ρ f 1.6 E fre f 45

Nomex Honeycomb
hh, t 20, 7.62 10−2

ρh 1.38 Ehre f 3
a, b, θ 2.75, 2.75, π

6
Epoxy glue hg, tg 0.3, 0.1 ρg 1 Eg 2

Length in mm, angle in rad, density in 103kg/m3, elastic moduli in GPa

Piezoelectric patches used for experiments on the Carbon/Nomex honeycomb beam
are Midé [53] QuickPack Actuators QP20W, whose specifications are given in Table 5.3.
It is a strain-type actuator that consists of two piezoelectric layers encapsulated in a film.
For standard QuickPack strain actuators, the material is industry type PZT-5A, its proper-
ties are given in Table 5.4.
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Table 5.3: Midé QuickPack QP20W properties

Specifications
Device size 2.00×1.50×0.03 (in) 50.8×38.1×0.76 (mm)

Device weight 0.28 (oz) 7.94 (g)
Active elements 1 stack of 2 piezos
Piezo wafer size 1.81×1.31×0.01 (in) 46.0×33.3×0.25 (mm)

Device capacitance 0.20 (µF)
Full scale voltage range ±200 (V)

Table 5.4: Piezoelectric material Properties

Property Symbol Units Value
Density ρ kg/m3 7700

Dielectric Constant εT /ε0 ε0 = 8.85×10−12 F/m 1800
kp 0.63

Coupling k33 0.70
Coefficients k31 0.30

kt 0.40
Piezoelectric d33 C/N ∗10−12 350

Charge Coefficients d31=d32
∗ m/V ∗10−12 -179

(Displacement Coeff) d15 not given by Midé, reference value [10]: 500
Piezoelectric

Voltage g33 V.m/N ∗10−3 24.2
Coefficients g31 -11.0

(Voltage Coeff)
Elastic cE

11 N/m2 ∗1010 6.9
Moduli cE

33 5.5

∗ the poling direction is x3 and PZT is supposed to be isotropic in-plane (x1,x2)

By default, the QuickPack Midé QP20W, with two piezoelectric layers, has 4 elec-
trodes not connected with each other. The connection is determined and made by users.
Associated issues will be discussed in Section 5.3.4.
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5.3.2 Experimental Setup
To validate the piezoelectric plate model and its integration on the full honeycomb SVS
model, the beam was tested in free-free conditions up to 2 kHz. Three piezoelectric
patches were bonded on the beam as shown in Figure 5.1. Piezo 1 and Piezo 2 were
bonded on one side at two different locations, Piezo 3 on the other side of the beam, just
below piezo 1, in a configuration classically thought to lead to a collocated input/output
pair.

Figure 5.1: Test beam with piezoelectric patches

Two experimental modal tests were conducted on the beam. The first one, performed
at the Marcus Wallenberg Laboratory for Sound and Vibration Research (MWL) of KTH
Stockholm University, focused on the overall modal behavior of the beam. The results
are discussed in Sections 5.3.3 and 5.4.1. Inputs considered were piezoelectric actuator,
shaker and hammer. Two accelerometers were available to measure the z-acceleration at
the Piezo 1 and Piezo 2 positions. Additionally, a laser vibrometer (from Polytech) was
used to measure the z-velocity of the beam in 26 points centered on the beam upper side
and shown in Figure 5.1. Membrane and bending actuation were considered to cross-
check the validity of the setup (Section 5.3.4).

Exploitation of this test eventually motivated a second one focusing on the local me-
chanical deformation under the patches, see Section 5.4.2. The second test was per-
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formed at MSSMat laboratory of Ecole Centrale of Paris. The overall setups are illus-
trated in figure 5.2. A voltage amplifier (from Treck) was used to drive the piezoelectric
patches which were connected in parallel to favor membrane actuation (see discussion
in Section 5.3.4).

Figure 5.2: Experimental Setup. Left : picture of setup used at KTH. Right : functional
representation of setup (for tests at KTH and ECP)

Test analysis correlation initially showed significant phase errors. Significant energy
was thus spent diagnosing the problem which was eventually associated with the volt-
age amplifier. As shown in Figure 5.3, the overall transfer of the test has the vibration
transfer in series with an amplifier at the input and a velocimeter filter at the output. Fig-
ure 5.4 shows the initial measurement, the measured amplifier transfer and the corrected
structural transfer which is the one that should be correlated with the model.

Figure 5.3: Functional representation of the measurement loop
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Figure 5.4: Frequency Response Functions amplifier transfer, structure transfer com-
pared with model transfer and raw measured transfer, (velocity/piezo voltage)

The account for lowpass filter of the voltage amplifier allows to have a model transfer
in good agreement with the corrected measured structure transfer.

5.3.3 Correlation of modal properties

Finite element model presented in Section 5.2 has been implemented in MATLAB/SDT.
One recalls that for piezoelectric shell a single electric degree of freedom (DOF) is con-
sidered for each difference of potential through the thickness of each piezoelectric layer.
And this DOF is thus common for all elements covered by a given electrode. This differs
notably from the strategy used in piezoelectric volume elements, where the electric poten-
tial is defined at physical nodes and electrodes are defined as constraints: one grounded
electrode and an equipotentiality constraint for the other. In the QP20W application, each
patch has two piezoelectric layers and is thus associated with two electric DOFs.

For the implementation, the first strategy for the integration of the piezoelectric com-
ponent in honeycomb beam model is an adaptation of the mesh to conform to the patch
limits. One assumes the behavior of the elements covered by the piezoelectric material,
shown in grey on Figure 5.5, to be that of a single shell with three layers, the skin and the
piezoelectric layers. Laminated shell properties are computed using formulas described
earlier. The influence of glue, which is sometimes important was neglected here due to
a very low thickness (estimated at 0.03 mm). An electric DOF is also affected to each
piezoelectric layer of the element.

The material properties for piezolectric layers are elastic properties (E, G, ν, ρ) and
piezoelectric constants d and dielectric constants ε.
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Figure 5.5: Modeling of sandwich beam with piezoelectric layers

The modal test/analysis correlation is performed from the first test made at KTH Uni-
verstiy. The significant spatial resolution was meant to allow simple test/analysis corre-
lation. The results shown in Figure 5.6 and Table 5.5 indicate a very good correlation
in shaped, but errors in frequency that have a global trend. As shown in Section 4.3,
Nomex based honeycomb and/or glue have a viscoelastic behavior which causes the error
on modal frequencies seen here.

Figure 5.6: Test/Analysis correlation on Carbon/Nomex (CN20L) beam without parame-
ter frequency dependence

Table 5.5: Test/Analysis correlation on CN20L beam without frequency dependence

Test Model ∆F/F MAC
n f(Hz) n f(Hz) %
1 180.4 7 203.7 12.9 100
2 439.4 10 459.2 4.5 99
3 735.7 11 732.4 -0.4 99
4 994.4 14 954.4 -4.0 99
5 1330.1 16 1245.9 -6.3 95
6 1576.9 18 1454.3 -7.8 99
7 1893.5 19 1725.1 -8.9 97
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Figure 5.8 clearly illustrates that once the correct viscoelastic behavior is used, given
on Figure 5.7, frequency errors are quite small. Table 5.6 shows mode frequencies and
shapes of the Carbon/Nomex beam actuated by the patch Piezo 1, measured with laser
vibrometer, accounting for frequency dependence of the core properties. Modes are well
correlated, MAC is higher than 95% for the 7 first bending modes, and the frequency error
is lower than 1.4 %.

Figure 5.7: Viscoelastic law G?
xz( f ) of Nomex core including the glue updated from test

Figure 5.8: Test/Analysis correlation on Carbon/Nomex beam with frequency dependence
of G?

xz
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Table 5.6: Test analysis correlation on Carbon/Nomex beam

Test Model
∆F/F MACmode f (Hz) ζ shape mode f (Hz) shape

1 180.4 0.015 7 179.7 -0.4 99

2 439.4 0.0088 10 435.5 -0.9 99

3 735.7 0.0069 11 726.3 -1.3 99

4 994.4 0.0087 14 990.7 -0.4 99

5 1330.1 0.010 16 1312.8 -1.3 95

6 1576.9 0.010 18 1554.5 -1.4 99

7 1893.5 0.014 19 1871.3 -1.2 98

The viscoelastic law G?
xz( f ) has been used to obtain frequency transfer that accounts

for the frequency dependence. Figure 5.9 shows the transfers obtained by taking into ac-
count the frequency dependence (red dash curve), which is very similar to the test transfer
(blue solid curve). Whereas with a constant shear modulus G?

xz, simulated resonances are
shifted compared to test ones (green dash-dot curve).

Overall, the modal behavior is very well represented by the finite element model which
is clearly validated. The experiments however showed that out of resonance, the dynamic
behavior of the beam includes very local effects that were not reported elsewhere. These
local effects will be analyzed in much more detail in Section 5.4.
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Figure 5.9: Test/Analysis Frequency Response Functions of a Carbon/Nomex honeycomb
beam - Piezo 1 actuator - Laser sensor 6

5.3.4 Membrane and bending actuation

To analyze the local effects in Section 5.4, it is important to understand how the patch
actuation works. When a voltage is applied, a patch polarized in the x3 direction stretches
in its plane (x1,x2). Due to the offset of the patch from the mid-plane of the shell, this
membrane load induces moments and membrane loads that are located at the edge of the
patch. On classical beam models [57, 10, 9], one represents two loads at the edges. For
surface models considered here one really has a distribution of bending moment and in-
plane load along the edge of the patch, as represented on Figure 5.10.

Figure 5.10: Moments and membrane loads induced at the edge of the patch
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For the QuickPack QP20W, the two piezoelectric layers (electrodes) can be connected
in parallel or in series depending on the voltage delivered by the amplifier. One can also
use equal potential on both electrodes to favor membrane actuation and opposite potential
to favor bending. If the electrodes are connected in phase, the moments induced on the
edges of each layer tend to compensate for each other and the overall effect is a membrane
actuator. Connected in phase opposition, the moments on the edges add up and generate a
more efficient bending actuator. The Figure 5.11 sums up the possible cabling of the two
electrodes of the QuickPack QP20W patch.

Connection in phase : membrane actuation

Connection in phase opposition : bending actuation

Figure 5.11: Electrodes connection - side view and circuits - top view

To verify the setup and illustrate the local effects, tests in both configurations were
performed. Figures 5.12 and 5.13 illustrate the transfer between Piezo 1 to laser output
with both cabling configurations. Test and analysis are also superposed in the second
figure to confirm the quality of the model. Cabling 1 (membrane actuation) is clearly
much better in the present case with much higher induced vibration and bigger distance
between pole and zero.
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Figure 5.12: Frequency Response Functions between actuator Piezo 1 and laser sensor
6 - cabling 1 and cabling 2

Figure 5.13: Compared test/analysis FRF between actuator Piezo 1 and z-velocity of
node 3394 (center of the patch) - cabling 1 and cabling 2

To further illustrate the higher efficiency of cabling 1, the impedance
QPiezo1

VPiezo1
of piezo-

electric patch 1 was computed and is shown in Figure 5.14. The efficiency of a piezoelec-
tric actuator is directly proportional to the distance between pole and zero. For widely
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separated poles and zeros, the phase excursion would be 180o. For cabling 2 (bending ac-
tuation with 2 electrodes of the patch in phase opposition), the first 3 modes show a maxi-
mum phase below 1o. The potential of the actuator is thus extremely small. This confirms
that cabling 2 is not appropriate to control the considered beam. Cabling 1 (membrane
actuation) has a significantly higher potential but the maximum phase remains quite small.
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Figure 5.14: Phase of impedance (transfer from tension to charge) at Piezo 1 - Cabling
1 (membrane) and Cabling 2 (bending)

To gain further understanding, one computed the quasi-static response for an actua-
tion at 10 Hz. Figures 5.15 and 5.16 display the mechanical z-displacement and charge
distribution in the actuator elements. The charge is displayed at the 4 integration points
of each element, which do not correspond to nodes, so that no mesh is shown.

Figure 5.15: Quasi-static response at 10 Hz for bending and membrane actuation. Me-
chanical displacement. Color proportional to vertical displacement.
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The mechanical displacement clearly shows that skin bending actuation induces al-
most no global bending at this frequency. Membrane actuation induces overall bending
but also a very significant local bending below the patch. This effect is critical for the
poor performance of piezoelectric actuators in the present case and will be analyzed in
more detail in the next section.

The charge distributions the two electrode of the patch used as actuator, shown in
Figure 5.16, give useful information on how the patch really behaves. The charge distri-
bution is very far from being uniform. The top electrode Q2 shows the most variations, as
expected since it is located further away from the neutral axis. In membrane actuation, the
mean charge is significantly higher, and the difference between minimum and maximum
charge smaller than in bending actuation. This is consistent with a higher efficiency of
the membrane actuation with 2 electrodes of the patch in phase.

Figure 5.16: Quasi-static response at 10 Hz for bending and membrane actuation.
Charge in the top Q2 (shown right) and bottom Q1 (shown left) electrodes shown with

the same scale

Figure 5.17 for vertical bending, and Figure 5.18 for in-plane bending and torsion
show the charge distributions of the three patches for the two first bending modes (charge
distributions in bottom and top electrodes are shown left and right). Piezo 3 is used as
actuator, whereas Piezo 1 and Piezo 2 as sensors. The most variations are again found for
the top electrode Q2. The display can be used to verify that the average charge over the
surface of sensors is equal to zero as expected. This distribution is however not uniform
as was found to actuators.
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Figure 5.17: Bending response at 199.39 Hz (top) and 452.85 Hz (bottom) for membrane
actuation (Piezo 3). Charge in the top Q2 (shown right) and bottom Q1 (shown left)

electrodes shown with the same scale

Figure 5.18: In-plane bending at 259.64 Hz (left) and twisting at 376.86 Hz (right) re-
sponses for membrane actuation (Piezo 3). Charge in bottom Q1 electrode

5.4 Residual flexibility: experimental measurement and
implications

This section will focus on the illustration of local bending effects of the patches. The
detailed mechanical behavior of the structure under the patches has been the object of
very few studies. Its impact in the configuration studied in this work is very significant. It
is believed that such effects may reduce the performance of active control to some level
in a large number of configurations, hence the emphasis placed on the detailed validation
of these effects here.

Section 5.4.1 details the results found in the initial modal test that indicate local bend-
ing in the vicinity of the patch. As such effects have not been publicized in the literature,
section 5.4.2 details a refined test with detailed measurements over the patch surface.
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5.4.1 First test along the beam center

The first indications of the issue where found analyzing forced responses of the beam
modal test. Figure 5.19 shows test results indicating that the for frequencies away from
the resonance, the piezoelectric patch shows significant distortion in phase with the mode
before resonance and in opposition after resonance.

Figure 5.19: Left : Transfer from patch 1 to displacement at the middle of the patch
around the frequency of test mode 2. Right : shape before, at, and after resonance.

Carbon/Nomex honeycomb core beam

For a test using actuation on Piezo 3 (placed on the bottom skin), Figure 5.20 shows a
similar effect with a smooth mode and local bending of the top skin for forced responses
at off-resonance frequencies.

Figure 5.20: Test deflection shape measured by laser on the top face, beam actuated
by piezo3 placed on the bottom face. Top: identified mode. Bottom: responses at off-

resonance frequencies.

As shown in Figure 5.21 and the superposition in Figure 5.22, these experimental re-
sults are very well reproduced by the model. In Figure 5.22 the shapes are normalized to
optimize the match, since calibration information needed for a direct superposition was
missing in the test. With this adjustment, the superposition is almost perfect thus showing
the FEM validity.
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Figure 5.21: Analysis of the CN20L beam, actuator: patch 1. Shape before, at the 2nd
mode, and after resonance
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Figure 5.22: Test and simulation deflection shape comparison

5.4.2 Local behavior in vicinity of the patch
To give a clearer validation of the local behavior around the patch a second modal test was
performed at ECP with a much denser test mesh around the patch shown in figure 5.23.

Figure 5.23: Measurement locations for the modal test focusing on the patch behavior
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The density of measuring points has been increased in the vicinity of the patch to
show the blister. The test and simulations in Figure 5.24 reveal the same phenomenon on
the patch. In Figure 5.25, the quantitative comparison of the local patch deflection in x
and y directions confirms the nearly perfect correlation. Measurement errors are visible,
especially in x direction because the sensors were really close (only 3.8 mm between each
reflector).

400 Hz
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Mode 2 at 436.2 Hz 458.7 Hz
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Figure 5.24: Response before resonance at 400Hz, at resonance 436Hz, and after reso-
nance at 458Hz. Top: test. Bottom : simulation
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Figure 5.25: Local blister shape comparison on the x and y axes.
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With a validated model, one can give a clearer explanation of the phenomenon. The
static deformation due to the actuator has a blister shape shown in Figure 5.26 (see also
Figure 5.15 for a global view). In the low frequency range, this static deformation has
a major contribution at all frequencies except resonances. For modes (at resonances),
only the passive characteristics of the actuator have an influence so that a smooth shape is
found.

Figure 5.26: Blister of piezoelectric actuator. Simulated response at 375 Hz

To underline the importance of this result, one computed the impedance of actuator
Piezo 1. As outlined for Figure 5.14, a significant phase excursion is needed for efficient
actuation. Figure 5.27 compares the phase for a model with or without static correction.
It immediately appears that ignoring static correction would give the false impression of
an efficient setup.
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Figure 5.27: Phase of impedance (transfer from tension to charge) at Piezo 1. Cabling 1
(membrane). Blue : with static correction. Green: without static correction.
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5.5 Using piezo models for design

With the proposed modeling strategy being clearly validated in earlier sections, this sec-
tion focuses on the practical implementation of the modeling strategy. A simplification of
the model of patch plus skin is presented in Section 5.5.1, the purpose is to generate more
quickly the meshing for any placement configuration and for any size of patch. As shown
previously, the efficiency of the piezoelectric patch on the nominal honeycomb sandwich
(CN20, Carbon/Nomex honeycomb of 20 millimeter-thick) is limited by the local effect in
vicinity of the patch. The performances of patch actuation are discussed in Section 5.5.2
by comparing the position of open an closed circuit poles for several configurations of
sandwich thickness. Section 5.5.3 adresses to the modeling of a realistic trim panel.

5.5.1 Integration strategy

The model considered in previous sections implies significant adaptations. As shown in
Figure 5.28/a, the mesh is adapted in the vicinity of the patch and two composite proper-
ties are considered. One for the standard honeycomb skin (shown in blue in the figure)
and one for the patch which includes multiple layers for the skin plus two layers for the
patch, as shown in figure 5.10.

This approach is fine for a small beam model and if only few configurations of patch
locations are considered. Indeed, the adaptation of the mesh under the patches would be
quite time consuming for a large panel where multiple patch configurations would need
to be tested. Furthermore, many articles in the litterature consider that the piezoelectric
patch is glued using a viscoelastic material. In such cases, a volume layer is needed to
represent shear appropriately.

The idea tested here is thus to use separate elements to model the skin and the piezo-
electric patch, with linear constraints used to account for the offset between the two.
The shear stiffness of the glue layer (G/h) is deemed sufficiently high to suppose perfect
bonding and thus omit glue modeling.

An automated procedure was introduced to mesh the patch. Based on a given rectan-
gular shape, skin elements strictly under the patch are projected to the patch mid-surface.
The boundary between the projected elements and the edge of the reference rectangle is
then meshed automatically. The resulting model is shown in Figure 5.28/c. This approach
is deemed more acceptable than an adaptation of the honeycomb mesh because it only af-
fects a small part of the model and would be adapted for the reuse of nominal modes of
the nominal panel. As an intermediate validation, a model with two separate layers (skin
and piezo) but an adapted underlying mesh is also considered and shown in Figure 5.28/b.
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Figure 5.28: Piezoelectric patch model strategy: a/ adapted meshing and integrated
patch, b/ adapted meshing and 2 layers (patch and face sheet), c/ non-adapted meshing

and 2 layers

To compare these models, electric and mechanical transfers are shown in Figures 5.29
and 5.30. For piezo to mechanical and piezo cross transfers, the responses are almost

perfectly superposed. For the impedance
QPiezo2

VPiezo2
however, there is a significant offset of

about 30 % on the static response. This error can reasonably be attributed to the lack of
adaptation of the mesh on the patch edges.

Figure 5.29: Electric transfers for the 3 strategies. Input actuator Piezo 2 (Voltage). Left:
output sensor Piezo 1 (Voltage). Right: output charge generated on Piezo 2
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Figure 5.30: Sample piezo to laser sensor transfers

The problem on static response is illustrated in Figure 5.31 which shows the quasi-
static shape generated by the actuation (since the structure is free floating, one shows the
deformation at 1 Hz which avoids problems linked to rigid body modes). The deforma-
tions clearly show that the blister shape under the patch cannot be perfectly reproduced
due to the lack of mesh adaptation.

Figure 5.31: Shape at 1Hz for the 3 model strategies of the piezoelectric actuator (Piezo2)

The proposed strategy using multiple partially adapted meshes through the thickness,
is thus limited by the ability to reproduce local effects under the patch. The local nature
of this effect is clearly considered a design flaw of the considered configuration. With
better designs, the patch would induce bending with much greater wave length and the
mesh adaptation would probably be not as necessary.

5.5.2 Geometric properties and performance
The poor performance of the proposed configuration was clearly related to local bend-
ing of the skin under piezoelectric actuation. This was illustrated through the phase of
impedances in Figures 5.14 and 5.27. Another classical approach is to compare the posi-
tion of open an closed circuit poles. Figure 5.32 shows that these are indeed very close in
the chosen nominal configuration.
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Figure 5.32: Measured electric transfers between actuator Piezo 2 and sensor Piezo 1
with Piezo 3 open or short-circuit

To confirm intuition that the impact of the blister shape will depend on the panel
characteristics, Figure 5.33 displays the evolution of the shift of frequency between open
and closed loop configurations for input at actuator Piezo 2. As expected, diminution of
the core thickness leads to lower frequencies. A less trivial result is that the frequency
shift augments significantly (in the nominal 20 mm configuration a shift of 0.1 % is only
obtained above 1 kHz, with a 1 mm core it is found for the third mode around 200 Hz).
This shows that the proposed actuators would be appropriate for plate actuation and that
the problem comes from the honeycomb sandwich layup.
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Figure 5.33: Open/closed loop frequency shift (in %) as a function of core thickness (from
1 to 20 mm). Actuator 2.
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5.5.3 Application to a realistric trim panel

The industrial objective of this study was to be able to predict the effect of the active
control on helicopter trim panel made of honeycomb sandwich. The VASCo mock-up
shown in Figure 5.34 was developed by ONERA DMAE department in Toulouse to allow
a wide range of tests on a cabin representative of generic NH90 helicopter. The internal
volume is 2.9×2.5×2.2 m3. The mock-up is composed of several frames and longerons,
Carbon - honeycomb sandwich panels having a structural and acoustic role, side doors,
a floor, and a roof. Loudspeakers and shakers are implemented to simulate aerodynamic
sources and gear box excitations [58], the conditions in the cabin are close to acoustic
measurement in a real helicopter cabin.

Figure 5.34: VASCo mock-up

The helicopter trim panel chosen for validation is made with glass fiber laminate for
the face sheets, Nomex based honeycomb and melamine foam for the core, skins and core
are glued with epoxy resin, honeycomb and foam with glue redux 382H. The panel is
located at the trim roof. Its size is 1160 × 1240 mm, with 10 attachment points to the
cabin around the panel and 4 more around the centre. The attachment is done using blocks
which are considered elastic in the computation. Properties of the layup are given in Table
5.7 and figure 5.35, which also shows the location of piezoelectric patches.
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Table 5.7: Definition of VASCo sandwich properties

Geometric Parameters Material Parameters
Glassfiber face sheet h f 1 ρ f 1700 E f 21000

Epoxy resin hr 0.4 ρr 1200 Er 4000
Nomex Honeycomb hh 2.6 ρh 96 Eh 1

Glue redux 382H hg 0.15 ρg 1050 Eg 1950
Melamine foam hm 14 ρm 11.7 Em 0.35

Length in mm, density in kg/m3, elastic moduli in MPa

Figure 5.35: Trim panel used in VASCo mock-up. Left: patches localization. Right:
description of sandwich layers

The objective of the simulation is to demonstrate the applicability of the proposed
methodology to an industrial configuration. The mesh was generated using 9 elements
trough the thickness: 2 outer shells for the skins, and volume elements for the other layers
which are 4 glue, 2 Nomex honeycomb and 1 melamine. The piezoelectric patches are
modeled using 4 x 4 elements which is sufficient to view local skin bending. A local
automated 2D meshing procedure is used to obtain the adaptation of panel and patch
mesh sizes before generating the thickness layup through extrusion. Despite this fairly
rich procedure, the model has a reasonable size with 52 900 nodes, 221 000 DOFs and 60
000 elements. This poses no problem for panel computations and integration into a larger
model could be easily done using superelements.

The accuracy of mode predictions was established in Friendcopter european project [59]
(restricted publication).

Active control tests performed by ONERA showed very local acoustic emissions
around the patches. The model was thus used to confirm that this panel configuration
also showed local skin bending effects. Figure 5.36 clearly shows the blister shape for
a static piezoelectric input. Figure 5.37 compares impedance computations with and
without static correction. It clearly appears that the impact is even larger than for the
CN20 beams. Modes are almost invisible in the impedance when the static correction
is accounted for. One can thus conclude that the relative properties of patches and the
sandwich layup lead to a very poor actuation mechanism in this case.
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Figure 5.36: Static response to an applied voltage on piezo 5
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Figure 5.37: Impendance for piezo 5 transfer. Blue : with static correction. Green :
without static correction
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Chapter 6

Conclusion and perspectives

Chapter 2 presented a literature review on tools used to model panels with honeycomb
cores. Models detailing the honeycomb cell geometry are so large that equivalent repre-
sentations are needed to allow coarser and thus more manageable meshes. The so called
zig-zag (or layerwise model) and the shell-volume-shell model both properly represent the
transverse shear in a cross section and thus can be used to describe the dynamic behavior
of thick and/or viscoelastic layers such as honeycomb.The SVS model was preferred here
because the use of multiple elements through the thickness is compatible with all FEM
softwares, while zig-zag models require specific developments.

In the SVS model the honeycomb layer is represented by an equivalent volume with
orthotropic material properties. As detailed in Section 2.3.2, the estimation of these or-
thotropic properties has been the subject of many publications without reaching a general
agreement (see Table 3.4). The objective of chapter 3 was thus to introduce a numerical
procedure to estimate effective parameters for the orthotropic material. Such a procedure
can be seen as a numerical homogeneization.

The need for a numerical procedure allowing arbitrary detail in the cell meshing was
based on the comments found in the literature on the influence of adhesive layer and skin
properties. As a means to achieve this objective, it was proposed to use the frequency of
periodic modes (waves propagating with a certain wavelength) as an objective function
used to estimate equivalent properties of the honeycomb core.

In the sample case treated, the equivalence was shown to pose problems for low and
high frequencies. At low frequencies, the error on panel predictions is small but the re-
sponse is insensitive to the core properties which thus cannot be estimated properly. A
small bias in frequencies was related to a mass effect but proper analysis of the phe-
nomenon remains to be done. At high frequencies, or wavelengths lower than 10 cells,
the model breaks down but this could be expected, since the energy fraction associated
with skin bending increases rapidly.

The analysis of energy contributions in constituents as a function of wavelength also
gave very useful insight. In addition to showing the classical importance of the core
shear moduli G?

xz,G
?
yz and the skin modulus E f , it showed that shear moduli only have an

impact in a medium frequency range whose location depends on the skin properties. The
influence of glue was also shown to be significant and a method to separately estimate
core and glue properties was proposed.

While this is yet another procedure in a long list of methods giving similar results,
one can claim that the method is useful for a wide range of applications because of its
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key advantages of being able to account for arbitrary levels of detail, because periodic
modes are computed on two cell meshes, and giving the possibility to validate robustness
by comparing results at multiple wavelengths.

Issues that remain to be treated are the analysis of validity for static and dynamics ap-
plications, the modeling of transition regions where the skin or honeycomb have variable
material or geometric characteristics, or the experimental demonstration of the ability to
separate constituent properties in panel tests.

The objective of chapter 4 was to determine material properties of a specific Nomex
paper based honeycomb. This honeycomb is used in trim panels for helicopter and aircraft
applications. The process used, and validated in the chapter, is a model update of effec-
tive parameters by comparison of mode frequencies in free/free configuration. The initial
suspicion that this material has a viscoelastic behavior was clearly validated by showing
both frequency and temperature dependence. A fractional derivative model of the fre-
quency dependence of the effective parameters was identified and validated by reusing
values obtained on aluminum skin beams to predict responses on carbon skin beam tests.

For the considered honeycomb samples, the orthotropic shear moduli are both influen-
tial on the response (inducing frequency shifts of 3 to 5 %).Moreover, they are frequency
and temperature dependent in the 0-1 kHz range which is the target for active control. The
need to account for these dependencies in accurate predictions was thus established.

A first question left open is the use of estimated effective shear moduli to estimate
constituent properties. This corresponds to the inverse of the homogeneization procedure
introduced in chapter 3 and would allow predictions of effective properties for other core
thickness or cell dimensions. A second issue would be the improvement of damping
measurement in the test to allow the use of the imaginary part of the estimated shear
moduli for damping predictions.

Having a validated model for honeycomb panels, chapter 5 addresses the modeling of
piezoelectric patches to be used as sensors or actuators. After introducing the equations
needed for the development of a piezoelectric shell element and its integration in a fi-
nite element resolution procedure, the chapter discussed validations performed on carbon
skin/Nomex honeycomb beams equipped with MIDE QuickPack patches. When account-
ing for the viscoelastic behavior of the honeycomb, correlation of modal properties as well
as piezoelectric transfers was shown to be very good.

Analysis of forced responses showed a major impact of static contribution of the ac-
tuator. In terms of mechanical behavior, the effect corresponds to actuation of local skin
bending rather than global panel bending. In terms of control performance, this effect
leads to small pole/zero separation in collocated transfers which is known to correspond
to poor performance for collocated control strategies. Local skin bending being a not
obvious result, detailed experimental validation was performed to confirm the model va-
lidity.
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Proper understanding of how static contribution limits the controllability of honey-
comb panels is a major contribution of the thesis. The result clearly motivates the need to
use proper mechanical models, which has often been neglected in active control studies.

To conclude the chapter, strategies to incorporate patches using single or multiple el-
ement layouts, possibly with non-conforming meshes, were discussed. Avoiding remesh-
ing was shown to be possible in actuator placement phases provided that the underlying
mesh is sufficiently fine. Nominal modes could certainly be kept constant when testing
various actuator positions, but static deflections need to be recomputed to obtain proper
electrical transfers. This aspect is clearly absent in a lot of studies which use modal con-
trollabilities as a basis for placement. Introducing a placement algorithm accounting for
static effects is thus a clear need for the future.

Changing the honeycomb thickness was then shown to impact the static contribution
limitation. In the long term, the way to improve performance is to design a proper actua-
tion mechanism that has significant controllability for modes in the low frequency band,
which is of interest in active noise control. Such an actuation mechanism will certainly
require stiffening around the patch to favor panel bending while avoiding local skin bend-
ing. Introducing structural optimization procedures to obtain efficient actuation seems a
useful direction for future work.

Finally, the possibility to apply the proposed models for more realistic panels was
demonstrated using the VASCo helicopter cabin mock-up. The implementation of a 9
layer model with 9 piezoelectric patches posed no particular problem and the configura-
tion also showed major limitations due to the static contribution effect. This study thus
gave a proper mechanical explanation to issues in earlier active control experiments that
motivated the thesis.
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Résumé
Le contrôle actif a souvent été considéré pour la maîtrise du bruit basse fréquence rayonné
par les panneaux d’habillage dans les cabines des avions et hélicoptères. Ces panneaux
sont classiquement réalisés en matériaux sandwich nid d’abeille (nida), du fait de leur
très bon rapport résistance/masse. La mise en oeuvre des techniques de contrôle actif sur
des panneaux de type nida n’a pas toujours donné des résultats à la hauteur des attentes.
Le travail présenté dans cette thèse introduit un modèle coque/volume/coque (SVS) de
panneau nida équipé de pastilles piézoélectriques, valide ce modèle expérimentalement et
propose une analyse des limitations de performance du contrôle actif.
Pour la modélisation des panneaux nida, la principale difficulté est d’estimer les pro-
priétés effectives d’un matériau homogène équivalent au coeur. On introduit une procé-
dure d’homogénéisation numérique à partir d’un modèle 3D très détaillé de la structure
du nida. Cette procédure est basée sur la corrélation des modes périodiques du modèle
3D et du modèle SVS. L’utilisation de modes périodiques permet l’analyse détaillée de
l’influence des constituants dans le comportement vibratoire du nida, en particulier de la
couche de colle et des peaux du sandwich. Des essais vibratoires mettent en évidence
les effets viscoélastiques présents pour les nida à base de papier Nomex. Ces effets sont
pris en compte dans le modèle SVS en utilisant des paramètres élastiques dépendant de
la fréquence. On intègre ensuite des actionneurs et capteurs piézoélectriques au modèle
de panneau nida validé. Différentes stratégies pour l’intégration du modèle proposé dans
un processus de conception sont discutées. On montre enfin que la réponse statique à une
tension électrique correspond à une cloque, flexion très localisée des peaux plutôt que
flexion globale du panneau. Il en résulte une mauvaise performance des actionneurs. Cet
effet local est retrouvé sur un modèle de panneau d’habillage réaliste étudié à l’ONERA.
Mots clés : Contrôle actif, nid d’abeille, corrélation calcul-essais

Abstract
Active control has often been considered for low frequency control of noise radiated by
trim panels inside aircraft or helicopter cabins. Trim panels are usually made of honey-
comb core sandwich because of their high strength to mass ratio. Active control tech-
niques applied to honeycomb panel have not always given results as good as expected and
this thesis aims to understand these limitations based on validated mechanical models of
the active panels.
For the modeling of honeycomb panels, the main difficulty is to estimate equivalent prop-
erties for the core. A numerical homogenization procedure is introduced to estimate ef-
fective parameters of a shell/volume/shell model based on the correlation with periodic
modes of a detailed 3D model. The use of periodic modes allows a detailed analysis of
the influence of constituent properties, especially glue and skin. Tests show that the con-
sidered Nomex based honeycomb has significantly viscoelastic behavior. In the model,
the viscoelastic behavior of the core is taken into account by a frequency dependence
of material parameters. Piezoelectric actuators and sensors are included in the validated
honeycomb model. Strategies for integration in a numerical design process are discussed.
Finally, the static response to an applied voltage is shown to correspond to a blister shape
with local bending of the skin rather than global bending of the panel. This behavior re-
sults in poor actuator performance, which is also found in a realistic panel configuration
studied at ONERA.
Keywords: active control, honeycomb, test-analysis correlation
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