
Modelling structures with piezoelectric
materials : full, reduced order,
and state-space models

Theory and SDT Tutorial

Etienne Balmes
Arnaud Deraemaeker

SDTools
44 rue Vergniaud
75013 Paris (France)
Tel. +33 1 44 24 63 71

General info http://www.sdtools.com
Support http://support.sdtools.com

© Copyright 2001-2024 by SDTools

The software described in this document is furnished under a license agreement.

The software may be used or copied only under the terms of the license agreement.

No part of this manual in its paper, PDF and HTML versions may be copied, printed, or reproduced in any form

without prior written consent from SDTools.

Structural Dynamics Toolbox is a registered trademark of SDTools

OpenFEM is a registered trademark of INRIA and SDTools

MATLAB is a registered trademark of The MathWorks, Inc.

Other products or brand names are trademarks or registered trademarks of their respective holders.

Contents

1 Release notes 3

2 Basics of piezoelectricity 5

2.1 Piezoelectric constitutive laws in 3D . 8

2.2 Piezoelectric constitutive laws in plates . 10

2.3 Database of piezoelectric materials . 12

2.4 Illustration of piezoelectricity in statics: patch example 25

2.4.1 Patch in extensional mode . 25

2.4.2 Patch in shear mode . 27

3 Finite element formulations for piezoelectric structures 31

3.1 Piezoelectric solid finite elements . 32

3.2 Piezoelectric shell finite elements . 33

3.3 Full order model . 34

3.4 Using the Electrode stack entry . 36

3.5 Example 1 : Static response of a piezoelectric patch 37

3.5.1 Static response of a patch in extension mode 37

3.5.2 Static response of a patch in shear mode . 41

3.6 Example 2: Dynamic response of a piezoelectric disk 44

4 Sensors and Actuators definition 49

4.1 Input/Output shape matrices . 50

4.2 Collocated force-displacement pairs . 51

4.3 Non-collocated force-displacement pairs and combinations 58

4.4 Other types of actuators . 61

4.5 Other types of sensors . 68

4.6 Piezoelectric sensors and actuators . 71

4.6.1 General theory . 71

4.6.2 Aluminum plate with 4pzt patches (Shell model) 72

1

2 CONTENTS

4.6.3 Piezoelectric shaker with an accelerometer mounted on top (3D model) . . . 77

5 Methods for meshing plates with piezoelectric patches 81
5.1 Manual meshing . 82
5.2 Automated inclusion of piezo patches . 87
5.3 Using predefined patches . 96

6 Model reduction and I/O state-space models 99
6.1 Model reduction theory . 100

6.1.1 General framework . 100
6.1.2 Normal mode models . 101

6.2 State space models . 102
6.2.1 General theory . 102
6.2.2 State-space formulations with static correction 103
6.2.3 State-space models with static correction: illustration on the tower example . 104

6.3 State-space models with imposed displacement and acceleration 105
6.3.1 State-space models with imposed displacement 106
6.3.2 State-space models with imposed acceleration 108
6.3.3 Model reduction and state-space models for piezoelectric structures 113

6.4 State-space models and Craig-Bampton model reduction 116
6.4.1 State-space models with imposed displacements using CB matrices 117
6.4.2 State-space models with imposed accelerations 121
6.4.3 State-space models with imposed voltage (piezoelectric actuators) 124

7 Function reference 125
7.1 m piezo 127
7.2 p piezo 129
7.3 d piezo 133

Bibliography 137

Index 138

1

Release notes

4 CHAPTER 1. RELEASE NOTES

This manual gives a more detailed set of examples for the use of SDT for the modeling of piezoelectric
structures.
Major modifications for last release are

� General reorganisation of the document

� New format of graphics and figures with improved style sheets

� New script to compute dynamic impedance of a piezoelectric disk in
d piezo(’ScriptTutoPz disk impedance’)

Major modifications for SDT 7.1 are

� Inclusion of new materials (Ferroperm, Sonox, MFCs) in the m piezo database.

� Introduction of tutorials in d piezo(’Tuto’).

� New script for Macro Fiber Composites in d piezo(’TutoPlate mfc’).

� Theory and new script for point load actuator using a shaped triangular piezoelectric trans-
ducer in d piezo(’TutoPlate triang’).

� Theory and new script for vibration damping using RL shunt and piezoelectric patches in
d piezo(’TutoPz shunt’).

� Theory and new script for piezoelectric homogenization on RVEs of piezocomposites (applica-
tion to MFCs) in d piezo(’TutoPz P1 homo’) and d piezo(’TutoPz P2 homo’) .

� Color visualization of stress and strain added to IDE patch script d piezo(’TutoPatch num IDE’).

Major modifications for SDT 6.6 were

� Writing of the present manual

� Significant generalization of p piezo(’Electrode’) commands.

� Inclusion of elastic properties in the m piezo database.

� Introduction of electrical and charge viewing illustrated in this manual.

� Specialized meshing capabilities and examples are grouped in d piezo(’Mesh’).

2

Basics of piezoelectricity

Contents

2.1 Piezoelectric constitutive laws in 3D . 8

2.2 Piezoelectric constitutive laws in plates 10

2.3 Database of piezoelectric materials . 12

2.4 Illustration of piezoelectricity in statics: patch example 25

2.4.1 Patch in extensional mode . 25

2.4.2 Patch in shear mode . 27

6 CHAPTER 2. BASICS OF PIEZOELECTRICITY

Polarization consists in the separation of positive and negative electric charges at different ends of
the dielectric material on the application of an external electric field (Figure 2.1).

Spontaneous polarization is the phenomenon by which polarization appears without the application
of an external electric field. Spontaneous polarization has been observed in certain crystals in which
the centers of positive and negative charges do not coincide. Spontaneous polarization can occur
more easily in perovskite crystal structures.

The level and direction of the polarization is described by the electric displacement vector D:

D = εE + P (2.1)

where P is the permanent polarization which is retained even in the absence of an external electric
field, and εE represents the polarization induced by an applied electric field. ε is the dielectric per-
mittivity. If no spontaneous polarization exists in the material, the process through which permanent
polarization is induced in a material is known as poling.

Figure 2.1: Polarization: separation of positive and negative electric charges on the two sides of a
dielectric material

Ferroelectric materials have permanent polarization that can be altered by the application of an
external electric field, which corresponds to poling of the material. As an example, perovskite
structures are ferroelectric below the Curie temperature. In the ferroelectric phase, polarization can
therefore be induced by the application of a (large) electric field.

Piezoelectricity was discovered by Pierre and Jacques Curie in 1880. The direct piezoelectric effect
is the property of a material to display electric charge on its surface under the application of an

7

external mechanical stress (i.e. to change its polarization). (Figure 2.2a). The converse piezoelectric
effect is the production of a mechanical strain due to a change in polarization (Figure 2.2b).

Figure 2.2: Direct and converse piezoelectric effect

Piezoelectricity occurs naturally in non ferroelectric single crystals such as quartz, but the effect
is not very strong, although it is very stable. The direct effect is due to a distortion of the crys-
tal lattice caused by the applied mechanical stress resulting in the appearance of electrical dipoles.
Conversely, an electric field applied to the crystal causes a distortion of the lattice resulting in an
induced mechanical strain. In other materials, piezoelectricity can be induced through poling. This
can be achieved in ferroelectric crystals, ceramics or polymers.

A piezoelectric ceramic is produced by pressing ferroelectric material grains (typically a few microm-
eters in diameter) together. During fabrication, the ceramic powder is heated (sintering process)
above Curie temperature. As it cools down, the perovskite ceramic undergoes phase transformation
from the paraelectric state to the ferroelectric state, resulting in the formation of randomly oriented
ferroelectric domains. These domains are arranged in grains, containing either 90◦ or 180◦ domains
(Figure 2.3a). This random orientation leads to zero (or negligible) net polarization and piezoelectric
coefficients (Figure 2.3b)).

8 CHAPTER 2. BASICS OF PIEZOELECTRICITY

a) b)

Figure 2.3: Piezoelectric ceramic : a) ferroelectric grains and domains, b) distribution of poling
directions

The application of a sufficiently high electric field to the ceramic causes the domains to reorient in
the direction of the applied electric field. Note however that the mobility of the domains is not such
that all domains are perfectly aligned in the poling direction, but the total net polarization increases
with the magnitude of the electric field (Figure 2.4). After removal of the applied electric field, the
ferroelectric domains do not return in their initial orientation and a permanent polarization remains
in the direction of the applied electric field (the poling direction). In this state, the application
of a moderate electric field results in domain motions which are responsible for a deformation of
the ceramic and are the source of the piezoelectric effect. The poling direction is therefore a very
important material property of piezoelectric materials and needs to be known for a proper modeling.

Figure 2.4: Orientation of the ferroelectric domains in non-polarized and polarized ceramics

2.1. PIEZOELECTRIC CONSTITUTIVE LAWS IN 3D 9

Typical examples of simple perovskites are Barium titanate (BaTiO3) and lead titanate (PbT iO3).
The most common perovskite alloy is lead zirconate titanate (PZT- PbZr TiO3). Nowadays, the
most common ceramic used in piezoelectric structures for structural dynamics applications (active
control, shape control, structural health monitoring) is PZT, which will be used extensively in the
documented examples.

In certain polymers, piezoelectricity can be obtained by orienting the molecular dipoles within the
polymer chain. Similarly to the ferroelectric domains in ceramics, in the natural state, the molecular
dipole moments usually cancel each other resulting in an almost zero macroscopic dipole. Poling of
the polymer is usually performed by stretching the polymer and applying a very high electric field,
which causes the molecular dipoles to orient with the electric field, and remain orientated in this
preferential direction after removal of the electric field (permanent polarization). This gives rise to
piezoelectricity in the polymer. The technology of piezoelectric polymers has been largely dominated
by ferroelectric polymers from the polyvinylidene fluoride (PVDF) family, discovered in 1969. The
main advantage is the good flexibility, but their piezoelectric coefficients are much lower compared
to ferroelectric ceramics.

2.1 Piezoelectric constitutive laws in 3D

Up to a certain level of electric field and strain, piezoelectric materials behave linearly. This tutorial
is restricted to linear piezoelectricity, but the interested reader can refer to [1] for more details on
non-linear piezoelectricity.

Assuming a linear piezoelectric material and adopting the notations of the IEEE Standards on
piezoelectricity [2], the 3D constitutive equations are given by:



T1

T2

T3

T4

T5

T6

D1

D2

D3


=



cE11 cE12 cE13 0 0 0 0 0 −e31
cE12 cE22 cE23 0 0 0 0 0 −e32
cE13 cE23 cE33 0 0 0 0 0 −e33
0 0 0 cE44 0 0 0 −e24 0
0 0 0 0 cE55 0 −e15 0 0
0 0 0 0 0 cE66 0 0 0
0 0 0 0 e15 0 εS11 0 0
0 0 0 e24 0 0 0 εS22 0
e31 e32 e33 0 0 0 0 εS33





S1

S2

S3

S4

S5

S6

E1

E2

E3


(2.2)

where Ei and Di are the components of the electric field vector and the electric displacement vector,
and Ti and Si are the components of stress and strain vectors, defined according to:

10 CHAPTER 2. BASICS OF PIEZOELECTRICITY



T1

T2

T3

T4

T5

T6


=



T11

T22

T33

T23

T13

T12





S1

S2

S3

S4

S5

S6


=



S11

S22

S33

2S23

2S13

2S12


(2.3)

Matrix notations are usually adopted leading to:

{T} =
[
CE

]
{S} − [e]T {E}

{D} = [e] {S}+
[
εS

]
{E} (2.4)

A widely used alternative and equivalent representation consists in writing the constitutive equations
in the following form:

{S} =
[
sE

]
{T}+ [d]T {E}

{D} = [d] {T}+
[
εT

]
{E} (2.5)

where the following relationships hold: [
sE

]
=

[
cE

]−1
(2.6)

[e] = [d]
[
cE

]
(2.7)

[
εS

]
=

[
εT

]
− [d] [e]T (2.8)

There are also two additional possibilities to write these constitutive equations, which are less com-
monly used but are given here for completeness:

{S} =
[
sD

]
{T}+ [g]T {D}

{E} = − [g] {T}+
[
βT

]
{D} (2.9)

{T} =
[
cD

]
{S} − [h]T {D}

{E} = − [h] {S}+
[
βS

]
{D} (2.10)

The following relationships hold: [
cD

] [
sD

]
= I6 (2.11)[

βS
] [
εS

]
=

[
βT

] [
εT

]
= I3[

cD
]
=

[
cE

]
+ [e]T [h][

sD
]
=

[
cD

]
− [d]T [g][

βS
]
=

[
βT

]
− [g]T [h]

[d] =
[
εT

]
[g]

[g] = [h]
[
sD

]
(2.12)

2.1. PIEZOELECTRIC CONSTITUTIVE LAWS IN 3D 11

[h] =
[
εS

]
[e] (2.13)

The piezoelectric coefficients are contained in the matrix [d] whose structure is specific to each type
of piezoelectric material. The typical structure for a z-polarized PZT material is

[d] =

 0 0 0 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 0 0

 (2.14)

Regular PZT ceramics are isotropic in the plane perpendicular to the poling direction (d31 = d32,
d15 = d24), but piezoelectric composites can have orthotropic properties [3]. PVDF material does
not exhibit piezoelectricity in the shear mode, so that the typical structure is:

[d] =

 0 0 0 0 0 0
0 0 0 0 0 0
d31 d32 d33 0 0 0

 (2.15)

PVDF can be either isotropic or orthotropic in the plane perpendicular to the poling direction,
depending on the fabrication process (uni-axial or bi-axial). Table 2.1 gives typical piezoelectric
coefficients for PZT ceramics and PVDF films. Note that these properties can vary significantly
from the figures in the table, as there are many different material types. The permittivity is usually
given with its relative value which is the ratio of the permittivity by the permittivity of vacuum
(ε0 = 8.854 10−12F/m).

Material properties PZT PVDF (bi-axial)

Piezoelectric properties

d33 (pC/N) 440 -25
d31 (pC/N) -185 3
d32 (pC/N) -185 3

Relative permittivity

εr 1800 12

Young’s Modulus

Y1(GPa) 54 3
Y2(GPA) 54 3
Y3(GPA) 48 10
ρ (kg/m3) 7600 1800

Table 2.1: Typical piezoelectric properties of PZT ceramics and PVDF films

12 CHAPTER 2. BASICS OF PIEZOELECTRICITY

2.2 Piezoelectric constitutive laws in plates

When thin piezoelectric transducers are used with plate structures, the common plane stress hy-
pothesis (T3 = 0) must be used together with an hypothesis for the electric field. When the ceramic
is poled through the thickness, the hypothesis commonly adopted is that the electric field is zero in
the plane of the transducer (E1 = E2 = 0). The constitutive equations then reduce to:

T1

T2

T4

T5

T6

D3


=


cE∗
11 cE∗

12 0 0 0 −e∗31
cE∗
12 cE∗

22 0 0 0 −e∗32
0 0 cE∗

44 0 0 0
0 0 0 cE∗

55 0 0
0 0 0 0 cE∗

66 0
e∗31 e∗32 0 0 0 εS∗

33





S1

S2

S4

S5

S6

E3


(2.16)

where the superscript ∗ denotes the properties under the ”piezoelectric plates” hypothesis (T3 =
E1 = E2 = 0). These properties are related to the 3D properties with the following relationships:

cE∗
11 =

[
cE11 −

(cE13)
2

cE33

]
(2.17)

cE∗
12 =

[
cE12 −

cE13 c
E
23

cE33

]
(2.18)

cE∗
22 =

[
cE22 −

(cE23)
2

cE33

]
(2.19)

e∗31 =

[
e31 −

cE13 e33

cE33

]
(2.20)

e∗32 =

[
e32 −

cE23 e33

cE33

]
(2.21)

εS∗33 =

[
εS33 +

(e33)
2

cE33

]
(2.22)

The distinction is very important, as it is often not well understood and many errors can arise from
the confusion between plate and 3D properties of piezoelectric materials. Note however that the
dij , s

E
ij and εT coefficients are equal for plate and 3D constitutive equations. It is therefore prefer-

able to handle the material properties of piezoelectric materials in the form of (2.5).

Similarly to the 3D equations, the constitutive equations can be written in a matrix form, separating
the mechanical and the electrical parts:

{T} =
[
cE∗] {S} − [e∗]T {E}

{D} = [e∗] {S}+
[
εS∗

]
{E} (2.23)

2.3. DATABASE OF PIEZOELECTRIC MATERIALS 13

Using (2.7) in equations ((2.20),(2.21),(2.22)), one can further show that

[e∗] = [d∗]
[
cE∗] (2.24)

and for the permittivity:
εS∗33 = εT33 − [d∗] [e∗]T (2.25)

with
[d∗] =

[
d31 d32 0 0 0

]
(2.26)

and
[e∗] =

[
e∗31 e∗32 0 0 0

]
(2.27)

The values of e∗31, e
∗
32 and εS∗33 can therefore be computed knowing the elastic matrix

[
cE∗] and the

values of d31 and d32 and εT33

2.3 Database of piezoelectric materials

m piezo Dbval includes a number of material characteristics for piezoelectric materials. The prop-
erties are obtained from the datasheet of the material, but as we will illustrate, the data is not
always sufficient to calculate all the material properties needed for the computations. Most of the
information in the datasheet is generally related to the constitutive equations written in the form of
(2.5). For PZT, PVDF, or piezoelectric composites based on PZT and PVDF, the general form of
these matrices is:

S1

S2

S3

S4

S5

S6

D1

D2

D3


=



sE11 sE12 sE13 0 0 0 0 0 d31
sE12 sE22 sE23 0 0 0 0 0 d32
sE13 sE23 sE33 0 0 0 0 0 d33
0 0 0 sE44 0 0 0 d24 0
0 0 0 0 sE55 0 d15 0 0
0 0 0 0 0 sE66 0 0 0
0 0 0 0 d15 0 εT11 0 0
0 0 0 d24 0 0 0 εT22 0
d31 d32 d33 0 0 0 0 εT33





T1

T2

T3

T4

T5

T6

E1

E2

E3


(2.28)

For an orthotropic material, the compliance matrix
[
sE

]
can be written as a function of the engi-

neering constant Ei,νij and Gij as follows:

[
sE

]
=



1
Ex

−νyx
Ey

−νzx
Ez

0 0 0
−νxy
Ex

1
Ey

−νzy
Ez

0 0 0
−νxz
Ex

−νyz
Ey

1
Ez

0 0 0

0 0 0 1
Gyz

0 0

0 0 0 0 1
Gxz

0

0 0 0 0 0 1
Gxy


(2.29)

14 CHAPTER 2. BASICS OF PIEZOELECTRICITY

where z is aligned with the poling direction 3, and x, y with directions 1, 2 respectively. Note that
the matrix is symmetric so that:

νyx
Ey

=
νxy
Ex

,
νzx
Ez

=
νxz
Ex

,
νzy
Ez

=
νyz
Ey

(2.30)

A bulk piezoelectric ceramic exhibits transverse isotropic properties: the properties of the material
are the same in the plane perpendicular to the poling direction. In this case, the compliance matrix
reduces to:

[
sE

]
=



1
Ep

−νp
Ep

−νzp
Ez

0 0 0
−νp
Ep

1
Ep

−νzp
Ez

0 0 0
−νpz
Ep

−νpz
Ep

1
Ez

0 0 0

0 0 0 1
Gzp

0 0

0 0 0 0 1
Gzp

0

0 0 0 0 0
2(1+νp)

Ep


(2.31)

and due to the symmetry we have:
νzp
Ez

=
νpz
Ep

(2.32)

where the subscript p refers to the in-plane properties. The matrix of piezoelectric coefficients is:

[d] =

 0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0

 (2.33)

and the matrix of dielectric permittivities:

[
εT

]
=

 εT11 0 0
0 εT11 0
0 0 εT33

 (2.34)

In order to use such a piezoelectric material in a 3D model, it is therefore necessary to have access
to the 5 elastic constants Ep,Ez,νp,νzp and Gzp, 3 piezoelectric constants d31,d33, and d15 and two
dielectric constants εT11,ε

T
33. Unfortunately, such constants are generally not given in that form, but

can be calculated from the material properties found in the datasheet.

It is important to introduce the electromechanical coupling factors which are generally given in the
datasheet and are a function of the elastic, piezoelectric and dielectric properties of the material.
They measure the effectiveness of the conversion of mechanical energy into electrical energy (and

2.3. DATABASE OF PIEZOELECTRIC MATERIALS 15

vice-versa). There is one coupling factor for each piezoelectric mode:

k231 =
d231

εT33s
E
11

k233 =
d233

εT33s
E
33

k215 =
d215

εT11s
E
55

(2.35)

In addition, coupling factors kp for radial modes of thin discs, and kt for thickness modes of arbitrary
shaped thin plates are also commonly given in datasheet. kp is related to k31 through:

k2p =
2k231

1 +
sE12
s211

(2.36)

kt is always lower than k33 but there does not seem to be a simple explicit expression of kt as a
function of the material properties. The fact that kt is lower than k33 means that electrical energy
conversion in the d33-mode is less effective for a thin plate than for a rod. The definition of the
coupling factors k33 and k15 also allows to write alternative expressions:

k233 = 1− sD33
sE33

k215 = 1− sD55
sE55

= 1− εS11
εT11

(2.37)

We illustrate the use of these different relationships to form the full set of mechanical, piezoelectric
and dielectric properties for the material SONOX P502 from Ceramtec (http://www.ceramtec.com/)
which is a soft piezoceramic. The properties found in the datasheet on matweb.com are given in
Table 2.2 .

16 CHAPTER 2. BASICS OF PIEZOELECTRICITY

Material property value unit

Piezoelectric properties

d33 440 10−12m/V
d31 -185 10−12m/V
d15 560 10−12m/V
e33 16.7 C/m2 = As/m2

g33 26.9 10−3 V m/N

Permittivity

εT33 1850 ε0 F/m
εS33 875 ε0 F/m
εT11 1950 ε0 F/m
εS11 1260 ε0 F/m

Elastic properties

sE11 18.5 10−12 m2/N
sE33 20.7 10−12 m2/N
cD33 15.7 1010 N/m2

cD55 6.5 1010 N/m2

Coupling coefficients

k33 0.72
k15 0.74
k31 0.33
kp 0.62
kt 0.48

Density

ρ 7740 kg/m3

Table 2.2: Properties of SONOX P502 from the datasheet found on https://www.matweb.com (2013)

Ep and Ez are computed directly from the definitions of sE11 and sE33:

Ep =
1

sE11
= 54.05GPa (2.38)

Ez =
1

sE33
= 48.31GPa (2.39)

Knowing the value of sE11, d31, ε
T
33 and kp, s

E
12 can be computed:

sE12 = −sE11 + 2
d231
k2pε

T
33

= −7.6288 10−12m2/N

2.3. DATABASE OF PIEZOELECTRIC MATERIALS 17

allowing to compute the value of νp:

νp = −Eps
E
12 = 0.4124

and the value of Gp

Gp =
Ep

2(1 + νp)
= 19.17GPa

From the value cD55 and k15, we compute

sE55 =
1

cD55(1− k215)
= 34 10−12m2/N

from which the the value of Gzp is computed:

Gzp =
1

sE55
= 29.41GPa

The value of νzp cannot be calculated from the datasheet information. We therefore assume that,
as for most PZT ceramics:

νzp = 0.39

The value of νpz is calculated as:

νpz =
Ep

Ez
νzp = 0.44

The complete set of values is summarized in Table 2.3. These are the values used in m piezo.

18 CHAPTER 2. BASICS OF PIEZOELECTRICITY

Material property value unit

Piezoelectric properties

d33 440 10−12m/V
d31 -185 10−12m/V
d15 560 10−12m/V

Permittivity

εT33 1850 ε0 F/m
εT11 1950 ε0 F/m

Mechanical properties

Ep 54.05 GPa
Ez 48.31 GPa
Gzp 29.41 GPa
Gp 19.17 GPa
νp 0.4124
νzp 0.39
νpz 0.44
ρ 7740 kg/m3

Table 2.3: Properties of SONOX P502 to be used in 3D finite element models

Note that there is some redundancy in the data from the datasheet, which allows to check for
consistency. The two following coupling factors are computed from the data available and checked
against the tabulated values.

k31 =

√
d231

εT33s
E
11

= 0.3361

k33 =

√
d233

εT33s
E
33

= 0.7556

The values are close to the values in Table 2.2. In addition, the value of g33 is given by:

g33 =
d33

εT33
= 0.0269V m/N

and corresponds exactly to the value tabulated. The value of e33 can be computed using Equa-
tion (2.7), leading to:

e33 = 19.06C/m2

where there is a difference of about 15% with the tabulated value of e33 = 16.7C/m2. Note however
that this last value was found on matweb.com and is not given in the more recent datasheet on

2.3. DATABASE OF PIEZOELECTRIC MATERIALS 19

Ceramtec website (in 2023).

Using (2.37) to compute k15 with the values from the datasheet, one gets:

k15 =

√
1− εS11

εT11
= 0.5948

which shows the non-consistency of the value of εS11 in the datasheet. In fact, when computed using
(2.8), one gets:

εS11 = 908ε0

This illustrates the fact that it is difficult to obtain the full set of parameters needed for computation
for piezoelectric materials, as there are often some inconsistencies amongst the data available from
the manufacturers. What we believe is a ”best compromise” was used in the material properties
available in SDT.

From the input values in m piezo (Table 2.3), it is possible to compute the mechanical, piezo-
electric and permittivity matrices used in the four different forms of the constitutive equations
(2.4),(2.5),(2.9),(2.10) using the relationships (2.6)-(2.8)) and (2.11)-(2.13).

The command p piezo(’TabDD’,model) gives access to all the matrices based in the input values
in m piezo. This will be illustrated in section section 3.5.1 .

As the mechanical properties of PZT are not strongly orthotropic, a simplification can be done
by considering that the material is isotropic (for the mechanical and dielectric properties, not the
piezoelectric properties). An isotropic version of SONOX P502 is included in m piezo under the
name of SONOX P502 iso whose properties are given in Table 2.4.

20 CHAPTER 2. BASICS OF PIEZOELECTRICITY

Material property value unit

Piezoelectric properties

d33 440 10−12m/V
d31 -185 10−12m/V
d15 560 10−12m/V

Permittivity

εT 1850 ε0 F/m

Mechanical properties

E 54 GPa
ν 0.41
ρ 7740 kg/m3

Table 2.4: Simplified material properties for SONOX P502 considering mechanical isotropy

The second example is the PIC 255 PZT, also a soft piezoceramic, from PI ceramics. The properties
found in the datasheet in the year 2013 are given in Table 2.5 (https://www.piceramic.com). Note
that CD

33 was not given, therefore we estimated it from the value of PIC 155 given in the same
datasheet, which is just slightly stiffer.

2.3. DATABASE OF PIEZOELECTRIC MATERIALS 21

Material property value unit

Piezoelectric properties

d33 400 10−12m/V
d31 -180 10−12m/V
d15 550 10−12m/V
g31 -11.3 10−3 V m/N
g33 25 10−3 V m/N

Permittivity

εT33 1750 ε0 F/m
εT11 1650 ε0 F/m

Elastic properties

sE11 16.1 10−12 m2/N
sE33 20.7 10−12 m2/N
cD33 11 1010 N/m2

Coupling coefficients

k33 0.69
k15 0.66
k31 0.35
kp 0.62
kt 0.47

Density

ρ 7800 kg/m3

Table 2.5: Properties of PIC 255 from the datasheet (2013)

Ep and Ez are computed directly from the definitions of sE11 and sE33:

Ep =
1

sE11
= 62.11GPa

Ez =
1

sE33
= 48.31GPa

Knowing the value of sE11, d31, ε
T
33 and kp, s

E
12 can be computed:

sE12 = −sE11 + 2
d231
k2pε

T
33

= −5.22 10−12m2/N

allowing to compute the value of νp:

νp = −Eps
E
12 = 0.3242

22 CHAPTER 2. BASICS OF PIEZOELECTRICITY

and the value of Gp

Gp =
Ep

2(1 + νp)
= 23.53GPa

The value of sE55 can be computed as:

sE55 =
d215

εT11k
2
15

= 4.75 10−11m2/N

which leads to:

Gzp =
1

sE55
= 21.03GPa

Again, the value of νzp cannot be calculated from the datasheet information. We cannot assume a
value of 0.39 as previously, as it would lead to a non-physical value of νpz. As νp is in the range of
0.32 and νzp is typically slightly lower, we assume that :

νzp = 0.30

The value of νpz is calculated as:

νpz =
Ep

Ez
νzp = 0.39

The complete set of values is summarized in Table 2.6. These are the values used in m piezo. Note
that there is some redundancy in the data from the datasheet, which allows to check for consistency.
The two following coupling factors are computed from the data available and checked against the
tabulated values.

k31 =

√
d231

εT33s
E
11

= 0.36

k33 =

√
d233

εT33s
E
33

= 0.70

The values are very close to the values in Table 2.5. In addition, the value of g33 and g31 are given
by:

g31 =
d31
εT33

= −11.6 10−3 V m/N

g33 =
d33
εT33

= 25.8 10−3 V m/N

and are also very close to the values tabulated.

2.3. DATABASE OF PIEZOELECTRIC MATERIALS 23

Material property value unit

Piezoelectric properties

d33 400 10−12m/V
d31 -180 10−12m/V
d15 550 10−12m/V

Permittivity

εT33 1750 ε0 F/m
εT11 1650 ε0 F/m

Mechanical properties

Ep 62.11 GPa
Ez 48.31 GPa
Gzp 21.03 GPa
Gp 23.53 GPa
νp 0.3242
νzp 0.30
νpz 0.39
ρ 7800 kg/m3

Table 2.6: Properties of PIC 255 to be used in 3D finite element models from datasheet in 2013

As shown in the derivations above, the datasheet for PZT material typically do not contain the full
information to derive all the coefficients needed for computations, and some hypothesis need to be
made. In addition, it is usual to have a variation of 10 % or more on these properties from batch
to batch, and the datasheet are not updated for each batch. Note also that the properties are given
at 20 ◦C and are temperature dependant. The variations with temperature are rarely given in the
datasheet. This may also account for inaccuracies in the computations.

The more recent datasheet found on PI Ceramics website (2023) leads to slightly different properties,
and includes the value of CD

33, which gives a more precise value for Ez. The new datasheet information
is given in Table 2.7 and the resulting m piezo input parameters in Table 2.8. The updated properties
are included in the PIC255b material in m piezo. It is advised to use this updated material property,
as the main difference is for the Young’s modulus in the direction of poling. This parameter has an
important impact on the longitudinal natural frequency of disks and rods.

24 CHAPTER 2. BASICS OF PIEZOELECTRICITY

Material property value unit

Piezoelectric properties

d33 400 10−12m/V
d31 -180 10−12m/V
d15 550 10−12m/V
g31 -11.8 10−3 V m/N
g33 25 10−3 V m/N

Permittivity

εT33 1800 ε0 F/m
εT11 1750 ε0 F/m

Elastic properties

sE11 16 10−12 m2/N
sE33 19 10−12 m2/N
cD33 15.4 1010 N/m2

Coupling coefficients

k33 0.69
k15 0.65
k31 0.35
kp 0.62
kt 0.47

Density

ρ 7800 kg/m3

Table 2.7: Properties of PIC 255b from the datasheet (2023)

2.3. DATABASE OF PIEZOELECTRIC MATERIALS 25

Material property value unit

Piezoelectric properties

d33 400 10−12m/V
d31 -180 10−12m/V
d15 550 10−12m/V

Permittivity

εT33 1800 ε0 F/m
εT11 1750 ε0 F/m

Mechanical properties

Ep 62.5 GPa
Ez 52.63 GPa
Gzp 21.64 GPa
Gp 23.39 GPa
νp 0.3389
νzp 0.30
νpz 0.3562
ρ 7800 kg/m3

Table 2.8: Properties of PIC 255b to be used in 3D finite element models from datasheet in 2023

In much the same way, the material properties of PIC 181 which is a hard piezoceramic from the
same manufacturer have been updated from the PIC181 to the PIC181b properties in m piezo.

Table 2.9 summarizes the different material properties available in SDT, and the year of the datasheet
where the original data was found.

26 CHAPTER 2. BASICS OF PIEZOELECTRICITY

Manufacturer type year SDT name

Ceramtec Sonox P502 2023 SONOX P502
Ceramtec Sonox P502 - simplified 2023 SONOX P502 iso

PI Ceramics PIC181 2013 PIC181
PI Ceramics PIC181 2023 PIC181b
PI Ceramics PIC255 2013 PIC255
PI Ceramics PIC255 2023 PIC255b
Ferroperm Pz21 2018 FerropermPz21
Ferroperm Pz23 2018 FerropermPz23
Ferroperm Pz24 2018 FerropermPz24
Ferroperm Pz26 2018 FerropermPz26
Ferroperm Pz27 2018 FerropermPz27
Ferroperm Pz28 2018 FerropermPz28
Ferroperm Pz29 2018 FerropermPz29
Ferroperm Pz34 2018 FerropermPz34
Ferroperm Pz46 2018 FerropermPz46
Noliac NCE51 2012 Noliac.NCE51

Table 2.9: Piezoelectric materials available in SDT: manufacturer references and year, and SDT
name

2.4 Illustration of piezoelectricity in statics: patch example

2.4.1 Patch in extensional mode

Consider a thin piezoelectric patch of dimensions b x h x w. The poling direction, noted 3 in the IEEE
Standards on piezoelectricity is perpendicular to the plane of the piezoelectric patch. Continuous
electrodes are present on the top and bottom surfaces (z = 0, z = h) so that the electric potential
is constant on these surfaces and denoted by V1 and V2 respectively. We assume that a difference
of potential is applied between the electrodes, resulting in an electric field parallel to the poling
direction and equal to (Figure 2.5)

E3 = −
dV

dz
=
−(V2 − V1)

h
=

V1 − V2

h

2.4. ILLUSTRATION OF PIEZOELECTRICITY IN STATICS: PATCH EXAMPLE 27

Figure 2.5: A piezoelectric patch poled through the thickness with continuous electrodes on the top
and bottom surfaces

We adopt the following expression for the constitutive equations:

{S} =
[
sE

]
{T}+ [d]T {E}

{D} = [d] {T}+
[
εT

]
{E} (2.40)

The patch is assumed to be unconstrained so that it can expand freely, leading to {T} = 0, so that
we have :

{S} =



S1

S2

S3

S4

S5

S6


= [d]T {E} =



d31
V1−V2

h

d32
V1−V2

h

d33
V1−V2

h
0
0
0


(2.41)

We have taken into account the fact that the electric field is in the z-direction only. This shows
that when applying a difference of potential across the thickness (in the poling direction), strains
will be induced in the directions 1,2, and 3. The magnitude of these different strains is proportional
to the d3i coefficients of the piezoelectric material. For a ceramic PZT material, d31 = d32 < 0, and
d33 > 0 and is generally between 2 and 3 times larger in magnitude than d31 and d32.

The second equation can be used in order to assess the amount of charge that is accumulated on
both electrodes. We have :

{D} =


D1

D2

D3

 =
[
εT

]
{E} (2.42)

28 CHAPTER 2. BASICS OF PIEZOELECTRICITY

The only non-zero component of the D vector is D3 given by :

D3 = εT33
V1 − V2

h
(2.43)

The charge accumulated on the electrode is given by :

q = −
∫
S
{D} {n} dS

where {n} is the normal to the electrode. For the top electrode, this leads to :

q = −εT33A

h
(V1 − V2)

where A is the surface of the electrode. For the bottom electrode

q =
εT33A

h
(V1 − V2)

When (V1 − V2) is positive, the electric field is in the direction of poling and the charge on the top
electrode is negative, while the charge accumulated on the bottom electrode is positive (Figure 2.5).
Note that this equation corresponds to the equation linking the charge to the difference of potential
for a capacitor (q = C∆V). The value of the capacitance is therefore :

CT =
εT33A

h

which corresponds to the capacitance of the free piezoelectric patch ({T} = 0).

If we now consider the case where the piezoelectric patch is fully mechanically constrained ({S} = 0
), we have:

{T} = − [e]T {E} = − [e]T {E}
{D} =

[
εS

]
{E} (2.44)

leading to :

{T} =



T1

T2

T3

T4

T5

T6


=



−e31 V1−V2
h

−e32 V1−V2
h

−e33 V1−V2
h

0
0
0


D3 = εS33

V1−V2
h

(2.45)

2.4. ILLUSTRATION OF PIEZOELECTRICITY IN STATICS: PATCH EXAMPLE 29

The fact that the patch is not allowed to expand is responsible for the generation of internal stresses
which are proportionnal to the e3i coefficients. In this case, the capacitance is given by:

CS =
εS33A

h

which corresponds to the capacitance of the constrained piezoelectric patch ({S} = 0). This
illustrates the fact that the capacitance of a piezoelectric patch depends on the mechanical boundary
conditions. This is not the case for other types of dielectric materials in which the piezoelectric effect
is not present, and for which therefore the capacitance is independent on the mechanical strain or
stress.

2.4.2 Patch in shear mode

We now consider the same patch but where the polarization is in the plane of the actuator, as
represented in Figure 2.6. As in the previous example, continuous electrodes are present on the top
and bottom surfaces (z = 0, z = h) so that the electric potential is constant on these surfaces and
denoted by V1 and V2 respectively. We assume that a difference of potential is applied between the
electrodes, resulting in an electric field perpendicular to the poling direction and equal to

E2 = −
dV

dz
=
−(V2 − V1)

h
=

V1 − V2

h

The electric field is now applied in direction 2, so that it will activate the shear d24 = d15 mode of
the piezoelectric material.

Figure 2.6: A piezoelectric patch poled in the plane with continuous electrodes on the top and
bottom surfaces

30 CHAPTER 2. BASICS OF PIEZOELECTRICITY

The patch is assumed to be unconstrained so that it can expand freely, leading to {T} = 0, so that
we have :

{S} =



S1

S2

S3

S4

S5

S6


= [d]T {E} =



0
0
0

d24
V1−V2

h
0
0


(2.46)

We have taken into account the fact that the electric field is in the z-direction only, corresponding
to direction 2 in the local axis of the piezoelectric material (direction 3 is the poling direction by
convention). This shows that when the patch is poled in the plane, when applying a difference of
potential across the thickness, a shear strain in the local 23 plane will be induced. The magnitude
of this strain is proportional to the d24 coefficient of the piezoelectric material.

The second equation can be used in order to assess the amount of charge that is accumulated on
both electrodes. We have :

{D} =


D1

D2

D3

 =
[
εT

]
{E} (2.47)

The only non-zero component of the D vector is D2 given by :

D2 = εT22
V1 − V2

h
(2.48)

The charge accumulated on the electrode is given by :

q = −
∫
S
{D} {n} dS

where {n} is the normal to the electrode. For the top electrode, this leads to :

q = −εT22A

h
(V1 − V2)

where A is the surface of the electrode. For the bottom electrode

q =
εT22A

h
(V1 − V2)

When (V1−V2) is positive, the charge on the top electrode is negative, while the charge accumulated
on the bottom electrode is positive (Figure 2.6). The value of the capacitance is therefore:

CT =
εT22A

h

2.4. ILLUSTRATION OF PIEZOELECTRICITY IN STATICS: PATCH EXAMPLE 31

which corresponds to the capacitance of the free piezoelectric patch ({T} = 0) and is close to the ca-
pacitance when the poling is out of the plane of the transducer because εT22 ≃ εT33 (in reality, there is
typically a difference of 5% between these two values so that the capacitance will be slightly different).

If we now consider the case where the piezoelectric patch is fully mechanically constrained ({S} = 0
), we have:

{T} = − [e]T {E} = − [e]T {E}
{D} =

[
εS

]
{E} (2.49)

leading to :

{T} =



T1

T2

T3

T4

T5

T6


=



0
0
0

−e24 V1−V2
h

0
0


D2 = εS22

V1−V2
h

(2.50)

In this case, the capacitance is given by:

CS =
εS22A

h

which corresponds to the capacitance of the constrained piezoelectric patch activated in shear
({S} = 0). Note that this capacitance is clearly different from CS when the poling is out of the
plane, because the value of εS22 is very different from the value of εS33, due to the different values of
stiffness and piezoelectric coefficients in shear and extensional mode.

32 CHAPTER 2. BASICS OF PIEZOELECTRICITY

3

Finite element formulations
for piezoelectric structures

Contents

3.1 Piezoelectric solid finite elements . 32

3.2 Piezoelectric shell finite elements . 33

3.3 Full order model . 34

3.4 Using the Electrode stack entry . 36

3.5 Example 1 : Static response of a piezoelectric patch 37

3.5.1 Static response of a patch in extension mode 37

3.5.2 Static response of a patch in shear mode . 41

3.6 Example 2: Dynamic response of a piezoelectric disk 44

34CHAPTER 3. FINITE ELEMENT FORMULATIONS FOR PIEZOELECTRIC STRUCTURES

Hamilton’s principle is used to derive the dynamic variational principle [1]:∫ t2

t1

(∫
V

[
−ρ {ü}T {δu} − {S}T

[
cE

]
{δS}+ {E}T [e] {δS}

+ {S}T [e]T {δE}+ {E}T
[
εS

]
{δE}+ {f}T {δu} − {ρe}T {δϕ}

]
dV

+

∫
Ω1

{t}T {δu} dΩ−
∫
Ω2

{σ}T {δϕ} dΩ
)

dt = 0

(3.1)

where V is the volume of the piezoelectric structure, ρ is the mass density, {u} is the displacement
field and {δu} its variation, {ϕ} is the elecctric pontential and {δϕ} its variation. {f} is the volumic
force, {ρe} the volumic charge density, {t} the vector of applied surface forces on Ω1 and {σ} the
charge density applied on Ω2. The variational principle is the starting point for all discrete finite
element formulations. 3D and shell approximations are detailed below.

3.1 Piezoelectric solid finite elements

For 3D solids, the discretized strain and electric fields are linked to the discretized displacement
vector (u, v, w) and electric potential ϕ by:

{
S
E

}
=



ϵx
ϵy
ϵz
γyz
γzx
γxy
Ex

Ey

Ez


=



N, x 0 0 0
0 N, y 0 0
0 0 N, z 0
0 N, z N, y 0

N, z 0 N, x 0
N, y N, x 0 0
0 0 0 −N, x
0 0 0 −N, y
0 0 0 −N, z




u
v
w
ϕ

 (3.2)

where N, x u is a short notation for ∑
i

∂Ni

∂x
ui

and Ni(x, y, z) are the finite element shape functions. Plugging (3.2) in (3.1) leads to the discrete
set of equations which are written in the matrix form:[

Mqq 0
0 0

]{
¨qmech

V̈

}
+

[
Kqq KqV

KV q KV V

]{
qmech

V

}
=

{
Fmech

Q

}
(3.3)

where {qmech} contains the mechanical degrees of freedom (3 per node related to u, v, w), and {V }
contains the electrical degrees of freedom (1 per node, the electric potential ϕ). {Fmech} is the vector
of applied external mechanical forces, and {Q} is the vector of applied external charges.

3.2. PIEZOELECTRIC SHELL FINITE ELEMENTS 35

3.2 Piezoelectric shell finite elements

Shell strain is defined by the membrane, curvature and transverse shear as well as the electric field
components. In the piezoelectric multi-layer shell elements implemented in SDT, it is assumed that
in each piezoelectric layer i = 1...n, the electric field takes the form E⃗ = (0 0 Ezi). Ezi is assumed
to be constant over the thickness hi of the layer and is therefore given by Ezi = −∆ϕi

hi
where ∆ϕi is

the difference of potential between the electrodes at the top and bottom of the piezoelectric layer i.
It is also assumed that the piezoelectric principal axes are parallel to the structural orthotropy axes.

z

hp

m

piezo

mid-plane
z

h

Figure 3.1: Multi-layer shell piezoelectric element

The discretized strain and electric fields of a piezoelectric shell take the form

ϵxx
ϵyy
2ϵxy
κxx
κyy
2κxy
γxz
γyz
−Ez1

...
−Ezn



=



N, x 0 0 0 0 0 ... 0
0 N, y 0 0 0 0 ... 0

N, y N, x 0 0 0 0 ... 0
0 0 0 0 −N, x 0 ... 0
0 0 0 N, y 0 0 ... 0
0 0 0 N, x −N, y 0 ... 0
0 0 N, x 0 N 0 ... 0
0 0 N, y −N 0 0 ... 0
0 0 0 0 0 − 1

h1
... 0

... 0 ... − 1
hn





u
v
w
ru
rv
∆ϕ1

...
∆ϕn


(3.4)

There are thus n additional degrees of freedom ∆ϕi, n being the number of piezoelectric layers in
the laminate shell. The constitutive laws are obtained by using the ”piezoelectric plates” hypothesis
(2.16) and the definitions of the generalized forces N,M,Q and strains ε, κ, γ for shells:

36CHAPTER 3. FINITE ELEMENT FORMULATIONS FOR PIEZOELECTRIC STRUCTURES



N
M
Q
Dz1

...
Dzn


=



A B 0 GT
1 ... GT

n

B D 0 zm1G
T
1 ... zmnG

T
n

0 0 F 0 ... 0
G1 zm1G1 0 −ε1S ... 0
... 0 ... 0
Gn zmnGn 0 0 ... −εnS





ϵ
κ
γ
−Ez1

...
−Ezn


(3.5)

Dzi is the electric displacement in piezoelectric layer , zmi is the distance between the midplane of
the shell and the midplane of piezoelectric layer i (Figure 3.1), Gi is given by

Gi =
{

e∗31 e∗32 0
}
i
[Rs]i (3.6)

where ∗ refers to the piezoelectric properties under the piezoelectric plate assumption as detailed
in section 2.2 and [Rs]i are rotation matrices associated to the angle θ of the principal axes 1, 2 of
the piezoelectric layer given by:

[Rs] =

 cos2 θ sin2 θ sin θ cos θ
sin2 θ cos2 θ − sin θ cos θ

−2 sin θ cos θ 2 sin θ cos θ cos2 θ − sin2 θ

 (3.7)

Plugging (3.4) into (3.1) leads again to:[
Mqq 0
0 0

]{
¨qmech

V̈

}
+

[
Kqq KqV

KV q KV V

]{
qmech

V

}
=

{
Fmech

Q

}
(3.8)

where {qmech} contains the mechanical degrees of freedom (5 per node corresponding to the dis-
placements u, v, w and rotations rx, ry), and {V } contains the electrical degrees of freedom. The
electrical dofs are defined at the element level, and there are as many as there are active layers in
the laminate. Note that the electrical degree of freedom is the difference of the electric potential
between the top and bottom electrodes ∆ϕ.

3.3 Full order model

Piezoelectric models are described using both mechanical qmech and electric potential DOF V . As
detailed in sections section 3.1 and section 3.2 , one obtains models of the form[

Zqq(s) ZqV

ZV q ZV V

]{
qmech

V

}
=

{
Fmech

Q

}
(3.9)

for both piezoelectric solids and shells, where Zqq(s) is the dynamic (mechanical) stiffness expressed
as a function of the Laplace variable s.

3.3. FULL ORDER MODEL 37

For piezoelectric shell elements, electric DOFs correspond to the difference of potential on the elec-
trodes of one layer, while the corresponding load is the charge Q. In SDT, the electric DOFs for
shells are unique for a single shell property and are thus giving an implicit definition of electrodes
(see p piezo Shell). Note that a common error is to fix all DOF when seeking to fix mechanical
DOFs, calls of the form ’x==0 -DOF 1:6’ avoid this error.

For volume elements, each volume node is associated with an electric potential DOF and one defines
multiple point constraints to enforce equal potential on nodes linked by a single electrode and sets
one of the electrodes to zero potential (see p piezo ElectrodeMPC and section ?? for a tutorial on
how to set these contraints). During assembly the constraints are eliminated and the resulting model
has electrical DOFs that correspond to potential, or differences of potential (if the other electrode’s
potential is set to 0) and loads to charge.

Short circuit (SC), charge sensors configurations correspond to cases where the potential is
forced to zero (the electrical circuit is shorted). In (3.9), this corresponds to a case where the po-
tential (electrical DOF) is fixed and the charge corresponds to the resulting force associated with
this boundary condition.

A voltage actuator corresponds to the same problem with V = VIn (built in SDT using fe load

(’DofSet’) entries). The closed circuit charge is associated with the constraint on the enforced
voltage and can be computed by extracting the second row of (3.9)

{Q} = [ZqC] {qmech}+ [ZV V] {VIn} (3.10)

Figure 3.2: Short circuit: voltage actuator, charge sensor

p piezo ElectrodeSensQ provides utilities to build the charge sensors, including sensor combina-
tions.

38CHAPTER 3. FINITE ELEMENT FORMULATIONS FOR PIEZOELECTRIC STRUCTURES

SC is the only possibly boundary condition to impose in a FEM model where voltage is the unknown.
The alternative is to leave the potential free which corresponds to not specifying any boundary con-
dition.

Open circuit (OC), voltage sensor, configurations correspond to cases where the charge remains
zero and a potential is created on the electrodes due to mechanical deformations.

A piezoelectric actuator driven using a charge source also would correspond to this configu-
ration (but the usual is voltage driving).

The voltage DOFs {V } associated to open-circuits are left free in (3.9). Since electrostatics are nor-
mally considered, ZV V is actually frequency independent and the voltage DOFs could be condensed
exactly

{V } = [ZV V]
−1 (Qin − [ZV q] {qmech}) (3.11)

This configuration is to be used for a voltage sensor, for example when the piezoelectric transducer
is attached directly to the data acquisition card or a voltage amplifier (with very large impedance
for sensing). In both cases the impedance is very large leading to a configuration close to an open
circuit (OC, infinite impedance). Another example of OC boundary conditions is the use of current
(charge) amplifiers for actuation, which is rarely used in practice but possible.

Figure 3.3: Open circuit (voltage sensor, charge actuator)

Since voltage is an explicit DOF, it can be observed using fe case(’SensDof’) sensor entries. Sim-
ilarly charge is dual to the voltage, so a charge input would be a simple point load on the active DOF
associated to an electrode. Note that specifying a charge distribution does not make sense since you
cannot both enforce the equipotential condition and specify a charge distribution that results from
this constraint.

It is possible to observe charge in an OC condition, but this is of little interest since this charge will

3.4. USING THE ELECTRODE STACK ENTRY 39

remain at 0.

In summary, when computing modes under voltage actuation, the proper boundary condition is a
SC, while for current (charge) actuation, it would be OC. For sensing, a voltage sensor corresponds
to OC, while a charge sensor requires SC.

3.4 Using the Electrode stack entry

SDT 6.6 underwent significant revisions to get rid of solver strategies that were specific to piezo ap-
plications. The info,Electrodes of earlier releases is thus no longer necessary. To avoid disruption
of user procedures, you can still use the old format with a .ver=0 field.

p piezo ElectrodeInit is used to build/verify a data structure describing master electric DOFs
associated with electrodes defined in your model. The info,Electrode stack entry is a structure
with fields

.data rows NodeId IsOpen gives the electrode nodes and for each one 1 if the circuit is open (voltage
free), and 0 if it is closed (voltage enforced or fixed, actuator).

.ver=1 is used to specify that the more general piezoelectric strategies of SDT >= 6.6 are used. This
is the combined with the p piezo Electrode2Case command which builds piezo loads and
sensors. For SDT 6.5 strategies, use .ver=0.

.def .DOF, .lab in only needed when combining multiple electrodes into a single input. The
.lab in is a cell array of strings, you should end the string with V so that it shows Q for
associated charge sensors.

Each column gives the weighting coefficients associated with each electrode. Thus def=[1;0;1]
corresponds to a single equal input on electrodes 1 and 3. Note that it does not make sense to
combine electrical DOFs that are of mixed nature (actuator/sensor).

The .DOF field should contain NodeId+.21 since the potential corresponds to DOF .21.

The .lab in field can be used to provide labels associated with each actuator/sensor defined
as a column of def. You should end the label with V so that the collocated sensor ends with a
Q label.

.cta .lab (optional) can be used to combine electrodes into sensors / actuators. Each row of .cta
defines a sensor (with matching .lab). Each column corresponds to an electrode declared in
the .data field. You cannot combine open and closed circuit electrodes. It is possible to use
both a .cta and a .def field.

40CHAPTER 3. FINITE ELEMENT FORMULATIONS FOR PIEZOELECTRIC STRUCTURES

[model,data]=p piezo(’ElectrodeInit’,model); generates a default value for the electrode stack
entry. Combination of actuators and sensors (both charge and voltage) is illustrated in section sec-
tion ?? .

3.5 Example 1 : Static response of a piezoelectric patch

3.5.1 Static response of a patch in extension mode

In this very simple example, the electric field and the strains are all constant, so that the electric
potential and the displacement field are linear. The example is treated analytically in section sec-
tion 2.4 . It is therefore possible to obtain an exact solution using a single volumic 8-node finite
element (with linear shape functions, the nodal unknowns being the displacements in x,y and z and
the electric potential ϕ). Consider a piezoelectric patch whose dimensions and material properties
are given in Table 3.1. The material properties correspond to the material SONOX P502 iso in
m piezo.

Property Value

b 10 mm
w 10 mm
h 2 mm
E 54 GPa
ν 0.41

d31 = d32 -185 10−12pC/N (or m/V)
d33 440 10−12pC/N (or m/V)

d15 = d24 560 10−12pC/N (or m/V)
εT33 = εT22 = εT11 1850 ε0

ε0 8.854 10−12Fm−1

Table 3.1: Geometrical and material properties of the piezoelectric patch

We first produce the mesh, associate the material properties and define the electrodes with
d piezo(’TutoPatch-s1’) . The default material is SONOX P502 iso. The number of elements in
the x, y and z directions are given by nx,ny and nz.

% See full example as MATLAB code in d_piezo(’ScriptTutoPatch’)

d_piezo(’DefineStyles’);

%% Step 1 Build mesh - Define electrodes

% Meshing script can be viewed with sdtweb d_piezo(’MeshPatch’)

3.5. EXAMPLE 1 : STATIC RESPONSE OF A PIEZOELECTRIC PATCH 41

model=d_piezo(’MeshPatch lx=1e-2 ly=1e-2 h=2e-3 nx=1 ny=1 nz=1’);

% Define electrodes

model=p_piezo(’ElectrodeMPC Top -ground’,model,’z==2e-3’);

model=p_piezo(’ElectrodeMPC Bottom -Input "Free patch"’,model,’z==0’);

The information about the nodes associated to each electrode can be obtained through the following
call (Figure 3.4):

p_piezo(’TabInfo’,model)

Figure 3.4: Tabinfo gives information about nodes associated to electrodes

The material can be changed for example to PIC 255 with the following call, and the full set of
mechanical, piezoelectric and permittivity matrices can be obtained in order to check consistency
with the datasheet (Figure 3.5). (d piezo(’TutoPatch-s2’)):

%% Step 2 Define material properties

model.pl=m_piezo(’dbval 1 -elas 2 PIC_255’);

p_piezo(’TabDD’,model) % creates the table with full set of matrices

42CHAPTER 3. FINITE ELEMENT FORMULATIONS FOR PIEZOELECTRIC STRUCTURES

Figure 3.5: Example subset of table with the full set of mechanical, dielectric and piezoelectric
coefficients in the 4 different forms of the constitutive equations

The next step consists in defining the boundary conditions and load case using
d piezo(’TutoPatch-s3’) . We consider here two cases, the first one where the patch is free to
expand, and the second one where it is mechanically constrained (all mechanical degrees of freedom
are equal to 0).

%% Step 3 Compute static response

% to avoid rigid body mode

model=stack_set(model,’info’,’Freq’,10);

def=fe_simul(’dfrf’,model); def.lab={’Free patch, axial’};
def.fun=[0 1]; def=feutil(’rmfield’,def,’data’,’LabFcn’);

% Append mechanically constrained structure

% can’t call fe_simul because no free DOF

% see code with sdtweb d_piezo(’scriptFullConstrain’)

def=d_piezo(’scriptFullConstrain’,model,def);

def.lab{2}=’Constrained patch, axial’;

We can look at the deformed shape, and plot the electric field for both cases.
(d piezo(’TutoPatch-s4’)

3.5. EXAMPLE 1 : STATIC RESPONSE OF A PIEZOELECTRIC PATCH 43

%% Step 4 Visualize deformed shape

cf=feplot(model,def);

% Electric field representation

p_piezo(’viewElec EltSel "matid1" DefLen 20e-4 reset’,cf);

fecom(’colormap’,[1 0 0]);fecom(’undef line’);iimouse(’resetview’);

cf.mdl.name=’E-field’; % Sets figure name

d_piezo(’SetStyle’,cf); feplot(cf);

Figure 3.6: Vizualisation of the electric field and deformed shape for the free patch under unit
voltage excitation

For the free patch deformed shape, we compute the mean strains from which d31, d32 and d33 are
deduced. The values are found to be equal to the analytical values used in the model. Note that
the parameters of the constitutive equations can be recovered using (d piezo(’TutoPatch-s5’)):

%% Step 5 : check constitutive law

% Decompose constitutive law

CC=p_piezo(’viewdd -struct’,cf); %

where the fields of CC are self-explanatory. The parameters which are not directly defined are
computed from the equations presented in Section section 2.1 .

% Display and compute mean strains

a=p_piezo(’viewstrain -curve -mean’,cf); % Strain S

44CHAPTER 3. FINITE ELEMENT FORMULATIONS FOR PIEZOELECTRIC STRUCTURES

fprintf(’Relation between mean strain on free structure and d_3i\n’);

E3=a.Y(9,1); disp({’E3 mean’ a.Y(9,1) 1/2e-3 ’E3 analytic’})

disp([a.X{1}(1:3) num2cell([a.Y(1:3,1)/E3 CC.d(3,1:3)’]) ...

{’d_31’;’d_32’;’d_33’}])

For the constrained patch, we compute the mean stress from which we can compute the e31, e32 and
e33 values which are found to be equal to the analytical values used in the model:

% Display and compute mean stresses

b=p_piezo(’viewstress -curve -mean’,cf); % Stress T

fprintf(’Relation between mean stress on pure electric and e_3i\n’);

disp([b.X{1}(1:3) num2cell([b.Y(1:3,2)/-E3 CC.e(3,1:3)’]) ...

{’e_31’;’e_32’;’e_33’}])

% Mean stress/strain

disp([b.X{1} num2cell(b.Y(:,2)) num2cell(a.Y(:,1)) a.X{1}])

We can also compute the charge and the charge density (in pC/m2) accumulated on the electrodes,
and compare with the analytical values (d piezo(’TutoPatch-s6’)):

%% Step 6 Check capacitance values

% Theoretical values of Capacitance and charge density - free patch

CT=CC.epst_r(3,3)*8.854e-12*1e-2*1e-2/2e-3; %% Capacitance - free patch

CdensT=CC.epst_r(3,3)*8.854e-12/2e-3*1e12; %% charge density - free patch

% Theoretical values of Capacitance and charge density - constrained patch

CS=CC.epss_r(3,3)*8.854e-12*1e-2*1e-2/2e-3; %% Capacitance - free patch

CdensS=CC.epss_r(3,3)*8.854e-12/2e-3*1e12; %% charge density - free patch

% Represent charge density (C/S) value on the electrodes

% - compare with analytical values

cut=p_piezo(’electrodeviewcharge’,cf,struct(’EltSel’,’matid 1’));

b=fe_caseg(’stressobserve’,cut,cf.def);b=reshape(b.Y,[],2);

disp([{’’,’CdensT’,’CdensS’};{’Numeric’;’Theoretical’} ...

num2cell([mean(abs(b));CdensT CdensS])])

iimouse(’zoom reset’);

% Compute the value of the total charge (from reaction at electrical dof)

% Compare with analytical values

p_piezo(’electrodeTotal’,cf) %

3.5. EXAMPLE 1 : STATIC RESPONSE OF A PIEZOELECTRIC PATCH 45

disp(’Theoretical values of capacitance’)

disp([{’CT’;’CS’} num2cell([CT;CS])])

cf.mdl.name=’Charge’; % Sets figure name

d_piezo(’SetStyle’,cf); feplot(cf);

fecom(’ch 1’)

Figure 3.7: Vizualisation of the total charge on the electrodes for the unconstrained and constrained
patch under unit voltage excitation

The results clearly show the very large difference of charge density between the two cases (free patch
or constrained patch).

For this simple static example, a finer mesh can be used, but it does not lead to more accurate
results (this can be done by changing the values in the call to d piezo(’mesh’) for example:

% Build mesh with refinement

model=d_piezo(’MeshPatch lx=1e-2 ly=1e-2 h=2e-3 nx=5 ny=5 nz=2’);

% Now a model with quadratic elements

model=d_piezo(’MeshPatch lx=1e-2 ly=1e-2 h=2e-3 Quad’);

3.5.2 Static response of a patch in shear mode

As for the patch in extension, as the fields are also uniform (see section 2.4.2), the problem can be
modelled with a single 8-node element. The patch is meshed and then the poling is aligned with the
−y axis by performing a rotation of 90o around the x-axis (d piezo(’TutoPatchShear-s1’)).

46CHAPTER 3. FINITE ELEMENT FORMULATIONS FOR PIEZOELECTRIC STRUCTURES

d_piezo(’DefineStyles’);

% See full example as MATLAB code in d_piezo(’ScriptTutoShearPatch’)

%% Step 1 Build mesh and define electrodes

%Meshing script can be viewed with sdtweb d_piezo(’MeshPatch’)

model=d_piezo(’MeshPatch lx=1e-2 ly=1e-2 h=2e-3 nx=1 ny=1 nz=1’);

% Define electrodes

model=p_piezo(’ElectrodeMPC Top -ground’,model,’z==2e-3’);

model=p_piezo(’ElectrodeMPC Bottom -Input "Free patch"’,model,’z==0’);

% Rotate basis to align poling direction with y (-90 deg around x)

model.bas=basis(’rotate’,[],’rx=-90’,1); %create local basis with id=1

model=feutil(’setpro 1 COORDM=1’,model); % assign basis with id=1 to pro=1

Then the response is computed both for the free case and the fully constrained case. The deformed
shape for the free case is shown in Figure 3.8 together with the applied electric field:
(d piezo(’TutoShearPatch-s2’))

Figure 3.8: Deformed shape of a piezoelectric patch poled in the plane with an electric field applied
in the out-of-plane direction

%% Step 2 Compute static response

% to avoid rigid body mode

3.5. EXAMPLE 1 : STATIC RESPONSE OF A PIEZOELECTRIC PATCH 47

model=stack_set(model,’info’,’Freq’,10);

def=fe_simul(’dfrf’,model); def.lab={’Free patch, shear’};
def.fun=[0 1]; def=feutil(’rmfield’,def,’data’,’LabFcn’);

% Append mechanically constrained structure

% can’t call fe_simul because no free DOF

% see code with sdtweb d_piezo(’scriptFullConstrain’)

def=d_piezo(’scriptFullConstrain’,model,def);

def.lab{2}=’Constrained patch, shear’;

(d piezo(’TutoShearPatch-s3’))

%% Step 3 Vizualise deformed shape

cf=feplot(model,def); fecom(’undef line’);

% Electric field representation

p_piezo(’viewElec EltSel "matid1" DefLen 20e-4 reset’,cf);

cf.mdl.name=’E-field’; % Sets figure name

d_piezo(’SetStyle’,cf); feplot(cf);

The mean of shear strain and stress is evaluated and compared to the d24 piezo coefficient. Note
that the mean values are computed in the global yz axis for which a negative strain corresponds
to a positive strain in the local 23 axis. Finally the capacitance is evaluated and compared to the
theoretical values, showing a perfect agreement, and demonstrating the difference with the extension
case for CS .
(d piezo(’TutoShearPatch-s4’))

%% Step 4 : Check constitutive law

% Decompose constitutive law

CC=p_piezo(’viewdd -struct’,cf); %

% Display and compute mean strains

a=p_piezo(’viewstrain -curve -mean’,cf); % Strain S

fprintf(’Relation between mean strain on free structure and d_24\n’);

E3=a.Y(9,1); disp({’E3 mean’ a.Y(9,1) 1/2e-3 ’E3 analytic’})

disp([a.X{1}(4) num2cell([a.Y(4,1)/E3 CC.d(2,4)’]) ...

{’d_24’}])

% Display and compute mean stresses

b=p_piezo(’viewstress -curve -mean’,cf); % Stress T

48CHAPTER 3. FINITE ELEMENT FORMULATIONS FOR PIEZOELECTRIC STRUCTURES

fprintf(’Relation between mean stress on pure electric and e_24 \n’);

disp([b.X{1}(4) num2cell([b.Y(4,2)/-E3 CC.e(2,4)’]) ...

{’e_24’}])

% Mean stress/strain

disp([b.X{1} num2cell(b.Y(:,2)) num2cell(a.Y(:,1)) a.X{1}])

% Theoretical values of Capacitance and charge density - free patch

CT=CC.epst_r(2,2)*8.854e-12*1e-2*1e-2/2e-3; %% Capacitance - free patch

CdensT=CC.epst_r(2,2)*8.854e-12/2e-3*1e12; %% charge density - free patch

% Theoretical values of Capacitance and charge density - constrained patch

CS=CC.epss_r(2,2)*8.854e-12*1e-2*1e-2/2e-3; %% Capacitance - constrained patch

CdensS=CC.epss_r(2,2)*8.854e-12/2e-3*1e12; %% charge density - constrained patch

% Represent charge density (C/S) value on the electrodes

% - compare with analytical values

cut=p_piezo(’electrodeviewcharge’,cf,struct(’EltSel’,’matid 1’));

b=fe_caseg(’stressobserve’,cut,cf.def);b=reshape(b.Y,[],2);

disp([{’’,’CdensT’,’CdensS’};{’Numeric’;’Theoretical’} ...

num2cell([mean(abs(b));CdensT CdensS])])

iimouse(’zoom reset’);

(d piezo(’TutoShearPatch-s5’))

%% Step 5 Check capacitance

% Compute the value of the total charge (from reaction at electrical dof)

% Ccompare with analytical values

p_piezo(’electrodeTotal’,cf) %

disp(’Theoretical values of capacitance’)

disp([{’CT’;’CS’} num2cell([CT;CS])])

3.6 Example 2: Dynamic response of a piezoelectric disk

In this next example, we consider a piezoelectric disk of thickness=2mm and radius=8mm which
has electrodes on the top and bottom surfaces. The material used is PIC181 from PI Ceramics.
The mesh and corresponding electrodes are generated with the following script and represented in
Figure 3.9. (d piezo(’TutoDiskImpedance-s1’))

3.6. EXAMPLE 2: DYNAMIC RESPONSE OF A PIEZOELECTRIC DISK 49

% See full example as Matlab code in d_piezo(’ScriptTutoDiskImpedance’)

d_piezo(’Definestyles’);

%% Step 1 Build and represent mesh and electrodes

model=d_piezo(’MeshPIC181disk th=2e-3 r=8e-3 ner=10 nez=4 nrev=16’);

feplot(model); cf=fecom; cf.mdl.name=’PIC 181 piezo disk mesh’; iimouse(’resetview’)

d_piezo(’setstyle’,cf)

% Visualize electrodes

fecom(’curtabCase’,{’Top Actuator’;’Bottom Actuator’}) %

fecom(’;showline;proviewon;triax’) %

cf.mdl.name=’PIC 181 piezo disk electrodes’

d_piezo(’setstyle’,cf)

Figure 3.9: Piezo electric disk made of bulk PIC181 material (radius=8mm, thickness=2mm):
mesh(left) and electrodes(right)

We compute the dynamic response of the disk subjected to an imposed voltage on the top electrode
(the bottom electrode is grounded in the model), the frequency range is from 20 to 200 kHz. We
represent the voltage distribution on the disk, as well as the electric field at 20 kHz in Figure 3.10.
(d piezo(’TutoDiskImpedance-s2’))

50CHAPTER 3. FINITE ELEMENT FORMULATIONS FOR PIEZOELECTRIC STRUCTURES

%% Step 2 : Define range of frequencies and compute dynamic response

frq=linspace(20e3,200e3,256);

def=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,frq));

% visualize potential

feplot(model,def); cf=fecom;

fecom(’;showpatch;colordata21;’); cf.mdl.name=’PIC 181 piezo disk voltage’

d_piezo(’setstyle’,cf) ;

cf.osd_(’cbtr{string,Voltage(V)}’)
fecom(’colorscaleone’) %To have the correct scale

% View electric field

fecom(’;showline;scd 1e-4’)

p_piezo(’viewElec EltSel "matid1" DefLen 1e-4’,cf);

cf.mdl.name=’PIC 181 piezo disk E-field’

% To have a single color change clim (must be done with axProp to bypass normal)

st=cf.ua.axProp; st(3:4)={’@axes’,{’clim’,[480 510]}};cf.ua.axProp=st;
d_piezo(’setstyle’,cf)

cf.osd_(’cbtr{string,E(V/m)}’)

Figure 3.10: Response of a piezoelectric disk made of bulk PIC181 material (radius=8mm,
thickness=2mm) at 20kHz, voltage distribution(left) and electric field (right)

3.6. EXAMPLE 2: DYNAMIC RESPONSE OF A PIEZOELECTRIC DISK 51

A charge sensor is defined on the piezoelectric disk, allowing to compute the charge accumu-
lated at each frequency for an accumulated input voltage. It is represented in Figure 3.11(left).
(d piezo(’TutoDiskImpedance-s3’))

%% Step 3: Compute q/V as a function of the frequency

sens=fe_case(model,’sens’);

C1=fe_case(’SensObserve â^’DimPos 2 3 1’,sens,def);

C1=sdsetprop(C1,’PlotInfo’,’sub’,’magpha’,’scale’,’xlin;ylog’);

ci=iiplot;

iicom(ci,’curveInit’,C1.name,C1); iicom(’submagpha’);

d_piezo(’setstyle’,ci);

The electric impedance is defined as Z = V/I = 1/(jω)V/Q and represented in Figure 3.11(right).
The anti-resonance in the impedance curve around 140kHz corresponds to the short-circuited radial
resonance frequency of the disk, while the resonance around 160kHz corresponds to the open-circuit
resonance frequency of the disk. The spacing between these two frequencies can be used to compute
the electromechanical coefficient of the disk for the first radial resonance. (d piezo(’TutoDiskImpedance-s4’)

)

%% Step 4: Compute and plot electric impedance

% extract impedance

C2=C1; C2.Y=1./(2*pi*1i*C2.X{1}.*C2.Y); C2.X{2}={’Imp(Ohm)’};
iicom(ci,’curveInit’,C2.name,C2); iicom(’submagpha’);

d_piezo(’setstyle’,ci);

52CHAPTER 3. FINITE ELEMENT FORMULATIONS FOR PIEZOELECTRIC STRUCTURES

Figure 3.11: Response of a piezoelectric disk made of bulk PIC181 material (radius=8mm,
thickness=2mm) from 20kHz to 200kHz, Q/V(left) and electric impedance (Ohm) (right)

4

Sensors and Actuators
definition

Contents

4.1 Input/Output shape matrices . 50

4.2 Collocated force-displacement pairs . 51

4.3 Non-collocated force-displacement pairs and combinations 58

4.4 Other types of actuators . 61

4.5 Other types of sensors . 68

4.6 Piezoelectric sensors and actuators . 71

4.6.1 General theory . 71

4.6.2 Aluminum plate with 4pzt patches (Shell model) 72

4.6.3 Piezoelectric shaker with an accelerometer mounted on top (3D model) . . 77

54 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

4.1 Input/Output shape matrices

Dynamic loads applied to a discretized mechanical model can be decomposed into a product {F}q =
[b] {u(t)} where

• the input shape matrix [b] is time invariant and characterizes spatial properties of the applied
forces

• the vector of inputs {u} allows the description of the time/frequency properties.

Similarly it is assumed that the outputs {y} (displacements but also strains, stresses, etc.) are
linearly related to the model coordinates {q} through the sensor output shape matrix ({y} =
[c] {q}).
Input and output shape matrices are typically generated with fe c, fe case or fe load. Under-
standing what they represent and how they are transformed when model DOFs/states are changed
is essential.

Linear mechanical models take the general forms[
Ms2 + Cs+K

]
N×N

{q(s)} = [b]N×NA {u(s)}NA×1

{y(s)}NS×1 = [c]NS×N {q(s)}N×1

(4.1)

in the frequency domain, and

[M] {q′′}+ [C] {q′}+ [K] {q} = [b] {u(t)}
{y(t)} = [c] {q(t)} (4.2)

in the time domain.

N is the number of degrees of freedom in the model, NA is the number of independent actuators,
and NS is the number of sensors.
In the model form (4.1), the first set of equations describes the evolution of {q}. The components of
q are called Degrees Of Freedom (DOFs) by mechanical engineers and states in control theory. The
second observation equation is rarely considered by mechanical engineers (hopefully the SDT may
change this). The purpose of this distinction is to lead to the block diagram representation of the
structural dynamics

{u(s)}
- [b]

{F (s)}

-
[
Ms2 + Cs+K

]−1

{q(s)}

- [c]

{y(s)}

-

4.2. COLLOCATED FORCE-DISPLACEMENT PAIRS 55

which is very useful for applications in both control and mechanics.

In the simplest case of a point force input at a DOF ql, the input shape matrix is equal to zero
except for DOF l where it takes the value 1

[bl] =



...
0
1
0
...

 ← l
(4.3)

Since {ql} = [bl]
T {q}, the transpose of this Boolean input shape matrix is often called a localization

matrix. Boolean input/output shape matrices are easily generated by fe c Input/output shape
matrices become really useful when not Boolean. For applications considered in the SDT they are
key to

• distributed FEM loads, see fe load.

• the description of piezoelectric loads and sensors, see p piezo.

• the description of sensors that do not directly correspond to DOFs (accelerations in non global
directions at positions that do not correspond to finite element nodes).

• model reduction. To allow the changes to the DOFs q while retaining the physical meaning of the
I/O relation between {u} and {y}.

4.2 Collocated force-displacement pairs

Collocated force-displacement pairs are commonly used in active vibration control, as they result
in an alternance of poles and zeros in the open-loop transfer functions, leading to unconditionnaly
stable control schemes (when actuators and sensors dynamics are neglected). The definition of such
pairs is performed in SDT by first defining the sensors (related to DOFs in the model) and then
creating the respective collocated forces. This is illustrated below on a 3D model of a U-shaped
cantilever beam.

% See full example as MATLAB code in d_piezo(’ScriptTutoBeamCollocated’)

d_piezo(’DefineStyles’);

%% Step 1 : meshing and BC

model = femesh(’test ubeam’);

% BC : fix top

56 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

model=fe_case(model,’FixDOF’,’Clamp’,’z==0’);

%% Step 2: Compute modes and frequencies

def=fe_eig(model,[5 10 0]);

%% Step 3 : Introduce a point displacement sensor and visualize

% sdtweb sensor#slab % URN based definition of sensors

model = fe_case(model,’SensDOF’,’Point Sensors’,{’104:x’});
cf=feplot(model); iimouse(’resetview’);

% Make mesh transparent :

fecom(’showfialpha’) %

% Visualize sensor

fecom proviewon

fecom curtabcases ’Point Sensors’ % Shows the case ’Point Sensors’

% Improve figure

% Arrow length and thickness

sdth.urn(’Tab(Cases,Point Sensors){Proview,on,deflen,.25}’,cf)
sdth.urn(’Tab(Cases,Point Sensors){arProp,"linewidth,2"}’,cf)

cf.mdl.name=’Ubeam PS1’; % Model name for title

d_piezo(’SetStyle’,cf); feplot(cf);

% Insert the number for the sensor :

fecom(’textnode’,104,’fontsize’,14)

Figure 4.1 shows the finite element mesh of the U-beam with a sensor added on node 104 in the
x-direction. The load is then defined as being collocated to the sensor, i.e, in the x-direction and on
node 104. The static response of the U-beam to this load is computed with fe simul and shown in
Figure 4.2.

4.2. COLLOCATED FORCE-DISPLACEMENT PAIRS 57

Figure 4.1: U-beam with displacement sensor added on node 104 in direction x

%% Step 4 : Introduce collocated force actuator

model=fe_case(model,’DofLoad SensDof’,’Collocated Force’,’Point Sensors:1’) % 1 for first sensor if there are multiple

%% Step 5 : compute static response and visualize

model=stack_set(model,’info’,’oProp’,mklserv_utils(’oprop’,’CpxSym’));

d0=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0)); % Static response

%% Step 5 : compute static response and visualize

model=stack_set(model,’info’,’oProp’,mklserv_utils(’oprop’,’CpxSym’));

d0=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0)); % Static response

feplot(model,d0); fecom(’;scd .3;undef line’);

fecom curtabcases ’Point Sensors’

sdth.urn(’Tab(Cases,Point Sensors){Proview,on,deflen,.25}’,cf)
sdth.urn(’Tab(Cases,Point Sensors){arProp,"linewidth,2"}’,cf)
fecom(’textnode’,104,’fontsize’,14);

% Title

cf.mdl.name=’Ubeam PS1 Static’;

d_piezo(’SetStyle’,cf); feplot

58 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

Figure 4.2: Static response of U-beam to load on node 104 in direction x

The collocated transfer function is then computed using fe simul and plotted in the iiplot envi-
ronment (Figure 4.3)

%% Step 6 : Compute dynamic response in freq band of first 5 modes and plot

frq=linspace(0,def.data(6)-(def.data(6)-def.data(5))/2,300);

d1=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,frq)); % Dynamic response

% Construct projection matrix in sens.cta and plot collocated FRF

sens=fe_case(model,’sens’);

% Plot the 4 FRFs, FRFs 1 and 4 are collocated

C1=fe_case(’SensObserve -DimPos 2 3 1’,sens,d1);

C1=sdsetprop(C1,’PlotInfo’,’sub’,’magpha’,’scale’,’xlin;ylog’);

ci=iiplot;

iicom(ci,’curveInit’,C1.name,C1); iicom(’submagpha’);

d_piezo(’setstyle’,ci)

4.2. COLLOCATED FORCE-DISPLACEMENT PAIRS 59

Figure 4.3: Collocated transfer function for a force applied on node 104 in direction x, and a
displacement at the same node and in the same direction

Multiple sensors and actuators can also be generated. The single sensor is changed to two sensors
(adding a sensor on node 344 in y-direction). Note that if the same name is used in the definition of
the sensors, the previous definition is replaced (here ’Point sensors’ is the name of the sensing case).
The two sensors are shown on Figure 4.4.

%%% Step 7 : multiple collocated sensors and actuators

% Introduce two sensors and visualize

model = fe_case(model,’SensDOF’,’Point sensors’,{’104:x’;’344:y’});
cf=feplot(model);

% Visualize sensors :

fecom(’showfialpha’) %

fecom proviewon

fecom curtabcases ’Point Sensors’ % Shows the case ’Point Sensors’

% Improve figure

sdth.urn(’Tab(Cases,Point Sensors){Proview,on,deflen,.25}’,cf)
sdth.urn(’Tab(Cases,Point Sensors){arProp,"linewidth,2"}’,cf)

% Title

cf.mdl.name=’Ubeam MS1’;

% Insert the number for the sensor :

fecom(’textnode’,[104 344],’FontSize’,14)

60 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

d_piezo(’SetStyle’,cf)

Figure 4.4: U-beam with displacement sensor added on node 104 in direction x and 344 in direction
y

Two forces collocated to these sensors are then defined, and the static response is computed and
shown in Figure 4.5. The four transfer functions resulting from the definition of two sensors and
actuators are then computed and plotted. Two of them are collocated resulting in alternance of
poles and zeros (Figure 4.6), and the two others are not collocated and do not show this alternance
(Figure 4.7). Note that the two transfer functions are identical due to the reciprocity in linear
systems.

%% Step 8 : Introduce collocated force actuators

model=fe_case(model,’DofLoad SensDof’,’Collocated Force’,’Point sensors:1:2’)

%% Step 9 : compute static response and visualize (two static responses)

d0=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0)); % Static response

feplot(model,d0); fecom(’;scd .3; undef line’)

fecom(’textnode’,[104 344],’FontSize’,14)

% Style

d_piezo(’SetStyle’,cf); cf.os_(’LgMl-FontSize14’);% Keep both mdl.name and title

4.2. COLLOCATED FORCE-DISPLACEMENT PAIRS 61

Figure 4.5: Static response of the U-beam to two loads (104-x, 344-y)

%% Step 10 : Compute dynamic response in freq band of first 5 modes and plot

frq=linspace(0,def.data(6)-(def.data(6)-def.data(5))/2,300);

d1=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,frq)); % Dynamic response

% Construct projection matrix in sens.cta and project resp on sensor

sens=fe_case(model,’sens’);

% Plot the 4 FRFs, FRFs 1 and 4 are collocated

C1=fe_case(’SensObserve -DimPos 2 3 1’,sens,d1);

C1=sdsetprop(C1,’PlotInfo’,’sub’,’magpha’,’scale’,’xlin;ylog’);

ci=iiplot;

iicom(ci,’curveInit’,C1.name,C1); iicom(’submagpha’);

d_piezo(’setstyle’,ci);

62 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

Figure 4.6: Collocated transfer functions for two loads (104-x, 344-y)

Figure 4.7: The 4 transfer functions for two loads (104-x, 344-y), and two collocated point sensors

% End of script

4.3 Non-collocated force-displacement pairs and combinations

The example below illustrates the general definition of actuators and sensors which are not collocated.

% See full example in d_piezo(’ScriptTutoBeamNonCollocated’)

d_piezo(’DefineStyles’); % Init styles for figures

4.3. NON-COLLOCATED FORCE-DISPLACEMENT PAIRS AND COMBINATIONS 63

% Example 2 : Non collocated point sensors and actuators

%% Step 1 : meshing and BC

model = femesh(’test ubeam’);

% BC : fix top

model=fe_case(model,’FixDOF’,’Clamp’,’z==0’);

%% Step 2: Compute modes and frequencies

def=fe_eig(model,[5 10 0]);

%% Step 3 : Define sensors

model = fe_case(model,’SensDOF’,’Point Sensors’,{’104:x’;’207:y’});
cf=feplot(model); iimouse(’resetview’);

% Make mesh transparent :

fecom(’showfialpha’) %

% Visualize sensor

fecom proviewon

fecom curtabcases ’Point Sensors’ % Shows the case ’Point Sensors’

% Improve figure

% Arrow length and thickness

sdth.urn(’Tab(Cases,Point Sensors){Proview,on,deflen,.25}’,cf)
sdth.urn(’Tab(Cases,Point Sensors){arProp,"linewidth,2"}’,cf)

cf.mdl.name=’Ubeam MSNC’; % Model name for title

d_piezo(’SetStyle’,cf); feplot(cf);

% Insert the number for the sensor :

fecom(’textnode’,[104 207],’fontsize’,14)

Two point sensors are defined as 104-x and 207-y (Figure 4.8).

64 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

Figure 4.8: Point sensors at node 104 in direction x and 207 in direction y

Two actuators are then defined by combination of three forces (207-x, 241-x and 207-y). The first
actuator consists in two forces on nodes 207 and 241 in opposite direction along x acting together,
and the third force is on 207-y. The static and dynamic response to these loads is represented in
Figure 4.10 and Figure 4.11.

%% Step 4 : Define point actuators

% relative force between DOFs 207x and 241x and one point loads at DOFs 207y

data = struct(’DOF’,[207.01;241.01;207.02],’def’,[1 0;-1 0;0 1]);

model=fe_case(model,’DofLoad’,’Actuators’,data); %

cf=feplot(model); fecom(’showline’)

fecom curtabcases ’Actuators’ % Shows the case ’Actuators’

% Improve figure

% Arrow length and thickness

sdth.urn(’Tab(Cases,Actuators){Proview,on,deflen,.25}’,cf)
sdth.urn(’Tab(Cases,Actuators){arProp,"linewidth,2"}’,cf)

cf.mdl.name=’Ubeam MANC 1’; % Model name for title

d_piezo(’SetStyle’,cf); feplot(cf);

% Insert the number for the sensor :

4.3. NON-COLLOCATED FORCE-DISPLACEMENT PAIRS AND COMBINATIONS 65

fecom(’textnode’,[241 207],’fontsize’,14)

% Visualize second combination

cf.CStack{’Actuators’}.Sel.ch=2;sdth.urn(’Tab(Cases,Actuators)’,cf) % second

cf.mdl.name=’Ubeam MANC 2’; % Model name for title

d_piezo(’SetStyle’,cf); feplot(cf);

Figure 4.9: Load combinations for Ubeam

%% Step 5 : compute static response and visualize

model=stack_set(model,’info’,’oProp’,mklserv_utils(’oprop’,’CpxSym’));

d0=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0)); % Static response

feplot(model,d0); fecom(’;scd .1; undef line;’)

% Title

d_piezo(’SetStyle’,cf); cf.os_(’LgMl-FontSize14’);% Keep both mdl.name and title

fecom(’textnode’,[241 207],’FontSize’,14)

66 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

Figure 4.10: Static responses of Ubeam to load combinations

%% Step 6 : Compute dynamic response in freq band of first 5 modes and plot

% compute response

frq=linspace(0,def.data(6)-(def.data(6)-def.data(5))/2,300);

d1=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,frq)); % Dynamic response

% Construct projection matric in sens.cta and project resp on sensor

sens=fe_case(model,’sens’);

% Plot FRFs

C1=fe_case(’SensObserve -DimPos 2 3 1’,sens,d1);

C1=sdsetprop(C1,’PlotInfo’,’sub’,’magpha’,’scale’,’xlin;ylog’);

ci=iiplot;

iicom(ci,’curveInit’,C1.name,C1); iicom(’submagpha’);

d_piezo(’setstyle’,ci);

4.4. OTHER TYPES OF ACTUATORS 67

Figure 4.11: Dynamic response of Ubeam to load combinations u1 and u2, sensors on node 104 in
direction x, and 207 in direction y

% End of script

4.4 Other types of actuators

Other types of loads, such as surface or volumic loads are handled by the fe load command
(sdtweb(’fe load’) for more details) in SDT. The case of imposed displacement is handled with
fe case(’DofSet’) calls. The following script illustrates the use of volume and surface loads on
the U-beam.

68 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

% See full example in d_piezo(’ScriptTutoBeamSurfVol’)

d_piezo(’DefineStyles’); % Define styles for figures

%% Step 1 Apply a volumic load and represent

model = femesh(’testubeam’);

data=struct(’sel’,’groupall’,’dir’,[0 32 0]);

data2=struct(’sel’,’groupall’,’dir’,{{0,0,’(z-1).^3.*x’}});
model=fe_case(model,’FVol’,’Constant’,data, ...

’FVol’,’Variable’,data2);

% Visualize loads

cf=feplot(model); iimouse(’resetview’);

% Make mesh transparent :

fecom(’showfialpha’) %

% Visualize Load

fecom proviewon

% Improve figure

sdth.urn(’Tab(Cases,Constant){deflen,.5,arProp,"linewidth,2"}’,cf)
fecom curtabcases ’Constant’ % Shows the case ’Constant’

% Set style and print

cf.mdl.name=’Ubeam VLoad-Cst’; % Model name for title

d_piezo(’SetStyle’,cf); feplot(cf);

The first load is defined by ’data’ and is a constant volumic load in the y-direction. The second load,
defined by ’data2’ is in the z-direction and its magnitude depends both on the x and z position in
the U-beam (f(x, z) = x ∗ (z − 1)3). The two loads are represented in Figures 4.12 and 4.13 using
arrows and color codes (for the variable force only).

% Visualize variable Load and print

sdth.urn(’Tab(Cases,Variable){deflen,.5,arProp,"linewidth,2"}’,cf)
fecom curtabcases ’Variable’ % Shows the case ’Variable’

cf.mdl.name=’Ubeam VLoad-Var’; % Model name for title

d_piezo(’SetStyle’,cf); feplot(cf);

4.4. OTHER TYPES OF ACTUATORS 69

% Visualize Constant and Variable loads with colors

Load = fe_load(model); cf=feplot(model,Load); cf.mdl.name=’Ubeam VLoad Color’; % Model name for title

fecom(’;showpatch;colordataz;scd .0001;’); % display as color-code to see change of vol force with z and x

d_piezo(’SetStyle’,cf); feplot(cf); fecom(’colorbar on’)

Figure 4.12: Constant volumic force applied in the y-direction

Figure 4.13: Variable volumic force applied in the z-direction represented by arrows (left) and color
code proportionnal to amplitude in z-direction (right)

The following example shows how to define a surface load, using selectors to define the area of the

70 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

surface where the load is applied. In this case, the load is on the surface corresponding to x = −0.5
and z > 1.25. The resulting surface load is represented in Figure 4.14.

%% Step 2 : Apply a surface load case in a model using selectors

data=struct(’sel’,’x==-.5’, ...

’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
model=fe_case(model,’Fsurf’,’Surface load’,data); cf=feplot(model);

% Visualize Load

fecom proviewon

fecom curtabcases ’Surface Load’ % Shows the case ’Constant’

fecom showline

sdth.urn(’Tab(Cases,Surface load){deflen,.5,arProp,"linewidth,2"}’,cf)
cf.mdl.name=’Ubeam SLoad’; % Model name for title

d_piezo(’SetStyle’,cf); feplot(cf);

Figure 4.14: Surface load applied on a specific surface of the U-beam

The same can be done using node lists as in the example below

%% Step 3 : Applying a surfacing load case in a model using node lists

4.4. OTHER TYPES OF ACTUATORS 71

data=struct(’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
NodeList=feutil(’findnode x==-.5’,model);

data.sel={’’,’NodeId’,’==’,NodeList};
model=fe_case(model,’Fsurf’,’Surface load 2’,data); cf=feplot(model);

fecom proviewon

fecom curtabcases ’Surface load 2’ %

fecom showline

sdth.urn(’Tab(Cases,Surface load){deflen,.5,arProp,"linewidth,2"}’,cf)
cf.mdl.name=’Ubeam SLoad2’; % Model name for title

d_piezo(’SetStyle’,cf); feplot(cf);

The last example illustrates the use of sets to define surface loads (Figure 4.15)

Figure 4.15: Surface load applied on a specific surface of the U-beam

%% Step 4 : Applying a surfacing load case in a model using sets

% Define a face set

[eltid,model.Elt]=feutil(’eltidfix;’,model);

i1=feutil(’findelt withnode {x==-.5 & y<0}’,model);i1=eltid(i1);
i1(:,2)=2; % fourth face is loaded

72 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

data=struct(’ID’,1,’data’,i1,’type’,’FaceId’);

model=stack_set(model,’set’,’Face 1’,data);

% define a load on face 1

data=struct(’set’,’Face 1’,’def’,1,’DOF’,.19);

model=fe_case(model,’Fsurf’,’Surface load 3’,data); cf=feplot(model);

sdth.urn(’Tab(Cases,Surface load 3){deflen,.5,arProp,"linewidth,2"}’,cf)
fecom proviewon

fecom curtabcases ’Surface load 3’ %

cf.mdl.name=’Ubeam SLoad3’; % Model name for title

d_piezo(’SetStyle’,cf); feplot(cf);

% End of script

Another type of load is the case when degrees of freedom are imposed (imposed displacement,
velocity, acceleration, or electric potential in the case of piezoelectric actuators). The script below
illustrates the case where the U-beam has an imposed displacement on the cantilever side, in the
y-direction (Figure 4.16).

% See full example in d_piezo(’ScriptTutoBeamUimp’)

d_piezo(’DefineStyles’);

%% Step 1 Meshing and BC

model = femesh(’test ubeam’);

% BC : Impose displacement

% Fix all other dofs for Base

model=fe_case(model,’FixDof’,’Clamping’,’z==0 -DOF 1 3’);

%% Step 2 Apply base displacement in y-direction

% find node z==0

nd=feutil(’find node z==0’,model);

data.DOF=nd+.02; data.def=ones(length(nd),1);

model=fe_case(model,’DofSet’,’Uimp’,data); cf=feplot(model); iimouse(’resetview’)

% Visualize

fecom proview on

fecom curtabcases ’Uimp’ % Shows the case ’Constant’

4.4. OTHER TYPES OF ACTUATORS 73

% Set style and print

cf.mdl.name=’Ubeam Uimp’; % Model name for title

d_piezo(’SetStyle’,cf); feplot(cf);

Figure 4.16: Imposed displacement of the base of the U-beam in the y-direction, and sensor at node
104 in the y-direction

%% Step 2 : Introduce a point displacement sensor and visualize

model = fe_case(model,’SensDOF’,’Point Sensors’,{’104:y’});
cf=feplot(model);

% Make mesh transparent :

fecom(’showfialpha’) %

% Visualize sensor and actuator

fecom proviewon

sdth.urn(’Tab(Cases,Point Sensors){arProp,"linewidth,2"}’,cf)
sdth.urn(’Tab(Cases,Uimp){arProp,"linewidth,2"}’,cf)
fecom(’curtabCase’,’#(Uimp|Point)’)

cf.mdl.name=’Ubeam Uimp Sens Act’; % Model name for title

74 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

d_piezo(’SetStyle’,cf); feplot(cf);

% Insert the number for the sensor :

fecom(’textnode’,[104],’fontsize’,14)

The transfer function is then computed using fe simul and plotted in the iiplot environment
(Figure 4.17)

%% Step 3: Compute modes and frequencies (dofs in Dofset are fixed)

def=fe_eig(model,[5 10 0]);

feplot(model,def)

%% Step 4: Compute dynamic response in freq band of first 5 modes and plot

frq=linspace(0,def.data(6)-(def.data(6)-def.data(5))/2,300);

d1=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,frq)); % Dynamic response

% Construct projection matrix in sens.cta and plot collocated FRF

sens=fe_case(model,’sens’);

% Plot the 4 FRFs, FRFs 1 and 4 are collocated

C1=fe_case(’SensObserve -DimPos 2 3 1’,sens,d1);

C1=sdsetprop(C1,’PlotInfo’,’sub’,’magpha’,’scale’,’xlin;ylog’);

ci=iiplot;

iicom(ci,’curveInit’,C1.name,C1); iicom(’submagpha’);

d_piezo(’setstyle’,ci);

% End of script

4.5. OTHER TYPES OF SENSORS 75

Figure 4.17: Transfer function for an imposed displacement of the base of the U-beam in the y-
direction, and a displacement at node 104 in the y-direction

As expected, the static response is unitary, as the U-beam does not deform when a uniform unitary
displacement of the base is imposed, so that node 104 moves in the same direction and with the
same magnitude as the base.

Note that it is also possible to impose an acceleration when building state-space models, which will
be detailed in a dedicated chapter.

4.5 Other types of sensors

For point sensors, velocity and acceleration sensors can also be defined. The short script below
introduces a collocated sensor actuator pair on node 104 in direction x for the U-beam. The sensor
is either a displacement, velocity or acceleration sensor, and the resulting collocated FRFs are plotted
in Figure 4.18.

% See full example in d_piezo(’ScriptTutoBeamDispVelAcc’)

d_piezo(’DefineStyles’);

%% Step 1 : meshing, BC and compute modeshapes

model = femesh(’test ubeam’);

model=fe_case(model,’FixDOF’,’Clamp’,’z==0’);

%% Step 2: Compute modes and frequencies

def=fe_eig(model,[5 10 0]);

%% Step 3 : Introduce a point displ/vel/acc sensor and collocated force

76 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

model = fe_case(model,’SensDOF’,’Sensors’,{’104:x’;’104:vx’;’104:ax’});
model=fe_case(model,’DofLoad SensDof’,’Collocated Force’,’Sensors:1’) % 1 for first sensor if there are multiple

%% Step 4 : Compute response and plot FRFs

frq=linspace(10,def.data(6)-(def.data(6)-def.data(5))/2,300);

d1=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,frq)); % Dynamic response

% Construct projection matrix in sens.cta and plot collocated FRF

sens=fe_case(model,’sens’);

% Plot the 3 FRFs

C1=fe_case(’SensObserve -DimPos 2 3 1’,sens,d1);

C1=sdsetprop(C1,’PlotInfo’,’sub’,’magpha’,’scale’,’xlin;ylog’);

ci=iiplot; iicom(ci,’curveInit’,C1.name,C1); iicom(’submagpha’);

d_piezo(’setstyle’,ci);

% End of script

4.5. OTHER TYPES OF SENSORS 77

Figure 4.18: Collocated transfer functions with displacement, velocity and acceleration at the same
point

Other types of sensors are also defined in SDT using fe case(’Sens...’) calls. They are detailed
in Section 4.6 of the general SDT manual and are of the following type:

� general general sensor (low level).

� rel relative displacement sensor.

� trans translation sensor.

� triax triaxial sensors.

� laser for laser vibrometers, defining line of sight of laser.

� resultant resultant force sensor.

78 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

� strain strain or stress sensor.

Refer to SDT general documentation for examples of definition of such transducers. SDT also pro-
vides advanced tools to define sensors which are not at the location of nodes in the finite element
models. For more details, see the documentation of the fe sens command.

In addition, piezoelectric sensors are discussed in the next section (section 4.6)

4.6 Piezoelectric sensors and actuators

4.6.1 General theory

Essentially, when using piezoelectric materials in finite element models of structures, additional
electrical degrees of freedom are added to the model, generally in the form of voltage degrees of
freedom. The general form of the equations of motion was already given (see (3.8)) and is recalled
below:[

Mqq 0
0 0

]{
q′′

V ′′

}
+

[
Cqq 0
0 0

]{
q′

V ′

}
+

[
Kqq KqV

KV q KV V

]{
q
V

}
=

{
Fmech

Q

}
(4.4)

The equations of motion couple the electrical dofs to the mechanical ones through the matrices KV q

and KqV .

When piezoelectric materials are used for sensing and actuating, they have associated electrodes
which enforce equipotentiality on the surfaces. In the finite element model, this is taken into ac-
count by adding equality constraints between all the electrical dofs associated to an electrode. One
single electrical dof is then linked to each electrode, and these DOFs are used for actuation and
sensing.

Note that in the shell formulation of SDT, the electrical dofs are not associated to nodes, but rather
to elements, as detailed in section 3.2 . Each element can have several layers among which some
can be defined with piezoelectric material. Each piezoelectric layer of the shell element has then
one associated dof which corresponds to the difference of potential between the top and the bottom
electrode of that layer. This is equivalent to considering that the bottom electrode of each layer is
set to 0 volts and that the electrical dof represents the voltage on the top electrode.

For 3D elements, each node has an additional associated electrical dof, so that it is necessary to
define boundary conditions in terms of voltage on the two electrodes. In SDT, electrical dofs are

4.6. PIEZOELECTRIC SENSORS AND ACTUATORS 79

identified with .21

As explained in section 3.3 , actuation can be of two types : an electrical charge Q can be im-
posed on one of the electrodes, which is equivalent to defining a mechanical force, as this term
is on the right-hand-side of the equations. This case should be treated as the addition of point
loads using fe case(’DofLoad’) calls. It is however more common to use piezoelectric actuators
in a voltage-driven mode, which corresponds to imposing the voltage, and can be treated using a
fe case(’DofSet’).

Assume that the voltage DOFs can be divided in two parts :

{V } =
{

V0

Vin

}
(4.5)

where Vin corresponds to the voltages imposed on the actuators in the model, and the other voltage
DOFs are left free. We assume that the constraints related to the electrodes have already been taken
into account to reduce the different matrices. The first line of the equations of motion becomes
(assuming KV V is a diagonal matrix, which is usually the case as it corresponds to the matrix of
the individual capacitances) :

[
Mqq 0
0 0

]{
q′′

V ′′
0

}
+

[
Cqq 0
0 0

]{
q′

V ′
0

}
+

[
Kqq KqV0

KV0q KV0V0

]{
q
V0

}
=

{
Fmech −KqVinVin

Q0

}
(4.6)

The fact that there is no coupling term in the mass and damping matrices leads to an equivalent
problem where an imposed voltage corresponds to a mechanical load −KqVinVin.

Piezoelectric sensors are also of two types. Voltage sensing corresponds to measuring the voltage
DOF directly, and can thus be defined by a simple fe case(’SensDOF’) call. If a charge amplifier
is used to measure the signal generated by the piezoelectrc sensor, this is equivalent to measuring
a reaction force at the associated electrical DOF. In order to do that, one first needs to fix the
associated electrical DOF using a fe case(’FixDOF’) (if set to 0) or a fe case(’DofSet’) (if used
both as voltage actuator and charge sensor as in the case of self-sensing and piezo-shunt applications)
call, and then define the charge sensor with a p piezo ElectrodeSensQ call. Assume again that
the electrical dofs are divided in two parts

{V } =
{

V0

Vq

}
(4.7)

where Vq are fixed electrical DOFs where the charge needs to be measured. The charge on these
electrodes is then given by:

Q = KVqq {q}+KVqVq {Vq} (4.8)

80 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

The definition of actuators and sensors of these different types are illustrated below for a plate mod-
elled with shell elements, and an example of an accelerometer modelled with 3D elements.

4.6.2 Aluminum plate with 4pzt patches (Shell model)

The first example deals with an aluminum plate with 4 piezoceramic patches. The geometry and
the material properties are given in Figure 4.19 and Table 4.1

Figure 4.19: Geometric details of the aluminum plate with 4 piezoceramic patches

4.6. PIEZOELECTRIC SENSORS AND ACTUATORS 81

Property Value

Aluminum plate

E 72GPa
ν 0.3
ρ 2700kg/m3

Piezoceramic patches

E 54.05GPa
ν 0.41
ρ 7740kg/m3

thickness 0.25mm
d31 -185 10−12pC/N (or m/V)
d32 -185 10−12pC/N (or m/V)
εT33 1850 ε0
ε0 8.854 10−12Fm−1

Table 4.1: Material properties of the plate and the piezoceramic patches

It corresponds to a cantilevered plate with 4 piezoelectric patches modeled using the p piezo Shell

formulation. The first step consists in the creation of the model, the definition of the boundary
conditions, and the definition of the default damping coefficient. The different meshing procedures
are detailed further in section 5 . The resulting mesh is shown in Figure 4.20

(d piezo(’TutoPlate 4pzt single-s1’))

% See full example in d_piezo(’ScriptTutoPlate4Pzt’)

d_piezo(’DefineStyles’);

%% Step 1 - Build model and visualize

model=d_piezo(’MeshULBplate’); % creates the model

model=fe_case(model,’FixDof’,’Cantilever’,’x==0’); % Clamp plate

% Set modal default zeta = 0.01

model=stack_set(model,’info’,’DefaultZeta’,0.01);

cf=feplot(model); fecom(’colordatagroup’); set(gca,’cameraupvector’,[0 1 0])

cf.mdl.name=’Plate_4pzt’;

d_piezo(’SetStyle’,cf); feplot(cf);

One can have access to the piezoelectric material properties (Figure 4.21) and the list of nodes as-
sociated to each pair of electrodes (Figure 4.22) using p piezo Tab calls. Here nodes 1055 to 1058
are associated to the four pairs of electrodes defined in the model. The corresponding degree of
freedom is the difference of potential between the electrodes in each pair corresponding to a specific

82 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

Figure 4.20: Mesh of the composite plate. The different colours represent the different groups

4.6. PIEZOELECTRIC SENSORS AND ACTUATORS 83

piezoelectric layer. In this models, layers 1 and 3 are piezoelectric in groups 2 and 3 (the internal
layer correspond to supporting aluminum plate). Therefore only .21 (electrical) DOF is associated
to nodes 1055-1058.

p_piezo(’TabDD’,model); % List piezo constitutive laws

Figure 4.21: Example subset of table with the full set of mechanical, dielectric and piezoelectric
coefficients in the 4 different forms of the constitutive equations

r1=p_piezo(’TabInfo’,model); % List piezo related properties

Figure 4.22: Information about electrical master nodes related to each piezoelectric layer. Here
layers 1 and 3 for two zones with ProID 104 and 109 define the 4 piezoelectric patches

84 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

The next step consists in the definition of the actuators and sensors in the model. Here, we consider
one actuator on Node 1055 (layer 3 of group 1), the four piezoelectric patches are used as charge
sensors, and the tip displacement of the cantilever beam is measured at the right-upward corner of
the beam (corresponding to node 1054 here). Note that in order for Q-S1, Q-S2 and Q-S3 to measure
resultant charge, the corresponding electrical difference of potential needs to be set to zero. If this
is not done, then the charge sensors will measure a charge close to zero (round-off errors) as there
is no charge when the difference of potential across the electrodes is free. For Q-Act, the electrical
DOF is already fixed due to the fact that the patch is used as a voltage actuator.

%% Step 2 - Define actuators and sensors and visualize

nd=feutil(’find node x==463 & y==100’,model);

model=fe_case(model,’SensDof’,’Tip’,{[num2str(nd) ’:z’]}); % Displ sensor

i1=p_piezo(’TabInfo’,model);i1=i1.Electrodes(:,1);

model=fe_case(model,’DofSet’,’V-Act’,struct(’def’,1,’DOF’,i1(1)+.21, ...%Act

’Elt’,feutil(’selelt proid 104’,model))); % Elt defined for display

model=p_piezo(sprintf(’ElectrodeSensQ %i Q-Act’,i1(1)),model); % Charge sensors

model=p_piezo(sprintf(’ElectrodeSensQ %i Q-S1’,i1(2)),model);

model=p_piezo(sprintf(’ElectrodeSensQ %i Q-S2’,i1(3)),model);

model=p_piezo(sprintf(’ElectrodeSensQ %i Q-S3’,i1(4)),model);

% Fix ElectrodeSensQ dofs to measure resultant (charge)

model=fe_case(model,’FixDof’,’SC*S1-S3’,i1(2:end)+.21);

cf=feplot(model); fecom(’view3’)

cf.mdl.name=’Plate_4pzt’; d_piezo(’SetStyle’,cf); feplot(cf);

We can now visualize the voltage actuator and the tip displacement sensor. Note that to visualize
the piezoelectric actuator, it is necessary to associated a group of elements when defining it (see
fe case(’DofSet’) command above).

fecom(’showfialpha’)

fecom(’proviewon’)

% Arrow length and thickness

sdth.urn(’Tab(Cases,Tip){Proview,on,deflen,20}’,cf)
sdth.urn(’Tab(Cases,Tip){arProp,"linewidth,2"}’,cf)
fecom(’curtabCase’,{’Tip’;’V-Act’})

d_piezo(’SetStyle’,cf); feplot(cf);

% Insert the number for the sensor :

4.6. PIEZOELECTRIC SENSORS AND ACTUATORS 85

fecom(’textnode’,[nd],’fontsize’,14)

cf.mdl.name=’Plate_4pzt_Vact-Tip’; d_piezo(’SetStyle’,cf); feplot(cf);

Figure 4.23 shows the visualization of the tip sensor and voltage actuator.

Figure 4.23: Visualization of the tip sensor and voltage actuator

We can also visualize the charge sensors (Figure 4.24). Note however that in the case of plates, it is
not possible to distinguish on the visualization if the patch is on the top or the bottom of the plate,
so that Q-S2 and Q-S3 would give the same visualisation.

fecom(’curtabCase’,{’Q-S1’;’Q-S2’})
cf.mdl.name=’Plate_4pzt_QS1-2’;d_piezo(’SetStyle’,cf); feplot(cf);

86 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

Figure 4.24: Visualization of the 2 charge sensors Q-S1 and Q-S2

4.6. PIEZOELECTRIC SENSORS AND ACTUATORS 87

In order to check the effect of the actuator, we compute the static response using the full model and
represent the deformed shape (Figure 4.25).

(d piezo(’TutoPlate 4pzt single-s3’))

%% Step 3 Compute static and dynamic response

model=stack_set(model,’info’,’oProp’,mklserv_utils(’oprop’,’CpxSym’));

d0=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0)); % direct refer frf at 0Hz

cf=feplot(model,d0); fecom(’;view3;scd 20;colordatagroup;undefline’)

cf.mdl.name=’Plate_4pzt’; d_piezo(’setstyles’,cf);

Figure 4.25: Deformed shape under voltage actuation on one of the bottom piezoelectric patches

We can now compute the transfer function between the actuator and the four charge sensors, as well
as the tip sensor using the full model. The result is stored in the variable C1.

88 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

f=linspace(1,100,400); % in Hz

d1=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,f(:))); % direct refer frf

sens=fe_case(model,’sens’);

% Plot FRFs

C1=fe_case(’SensObserve -DimPos 2 3 1’,sens,d1);

C1=sdsetprop(C1,’PlotInfo’,’sub’,’magpha’,’scale’,’xlin;ylog’);

ci=iiplot;

iicom(ci,’curveInit’,C1.name,C1); iicom(’submagpha’);

d_piezo(’setstyle’,ci);

% End of script

Figure 4.26 shows the different transfer functions from the voltage actuator to the tip displacement
sensor (left) and to all charge sensors (right). The figure shows that Q-SAct shows an alternance
of poles and zeros, but the smallest distance between the poles and zeros. This configuration corre-
sponds to transfer functions used for shunting applications. For QS1 to QS3, the pole-zero alternance
is lost due to the fact that the sensor and the actuator are not strictly collocated. The pole-zero
distance is also very different, although if we are looking at the structure with the beam theory, the
three FRFs should be identical. This demonstrates clearly the need for shell models, and the impact
of the location of the sensor on the pole-zero pattern, and pole-zero distances.

Figure 4.26: Open-loop transfer function between V-Act and tip displacement (left), the 4 charge
sensors (right)

4.6. PIEZOELECTRIC SENSORS AND ACTUATORS 89

4.6.3 Piezoelectric shaker with an accelerometer mounted on top (3D model)

The second example deals with an accelerometer (sensor) mounted on a piezoelectric shaker (actua-
tor). The piezoelectric shaker consists of two steel cylindrical parts with a piezoelectric disc inserted
in between. The base of the shaker is fixed and the piezoelectric element is used as an actuator:
imposing a voltage difference between the electrodes results in the motion of the top surface of the
shaker to which the accelerometer is attached (Figure 4.27).

Figure 4.27: Piezoelectric accelerometer attached to a piezoelectric shaker for sensor calibration

The piezoelectric properties for the sensing element in the piezoelectric shaker are given in Table 4.3.
The actuating element has the same properties as the sensing element and is poled through the
thickness, as the actuator.

Part Material E (GPa) ρ (kg/m3) ν

Wear plate Al2O3 400 3965 0.22
Sensing element Piezo 54 7740 0.44

Proof mass Steel 210 7800 0.3

Table 4.2: Mechanical properties of the wear plate, sensing element and proof mass

90 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

Property Value

d31 = d32 -185 10−12pC/N (or m/V)
d33 440 10−12pC/N (or m/V)
d15 = d24 560 10−12pC/N (or m/V)
εT33 = εT22 = εT11 1850 ε0
ε0 8.854 10−12Fm−1

Table 4.3: Piezoelectric properties of the sensing element

% Init working directory for figure generation

d_piezo(’SetPlotwd’);

% See full example as MATLAB code in d_piezo(’ScriptTutoPzAccShaker’)

d_piezo(’DefineStyles’);

%% Step 1 - Build mesh and visualize

% Meshing script,open with sdtweb d_piezo(’MeshPiezoShaker’)

model=d_piezo(’MeshPiezoShaker’);

cf=feplot(model); fecom(’colordatapro’);

The mesh is represented in Figure 4.28. In the meshing script, both a voltage and a charge sensor
are defined for the piezoelectric disk in the accelerometer for the top electrode, and the the bottom
electrode potential is set to zero. A voltage actuator is then added to the shaker top electrode, while
the bottom electrode potential is set to 0. The shaker is mechanically fixed at the bottom:

%% Step 2 - Define actuators and sensors

% -input "In" says it will be used as a voltage actuator

model=p_piezo(’ElectrodeMPC Top Actuator -input "Vin-Shaker"’,model,’z==-0.01’);

% -ground generates a v=0 FixDof case entry

model=p_piezo(’ElectrodeMPC Bottom Actuator -ground’,model,’z==-0.012’);

% Voltage sensor will be used - remove charge sensor

model=fe_case(model,’remove’,’Q-Top sensor’);

The different electrodes in the model can be visualized (Figure 4.29):

% Visualize electrodes

fecom(’;showline;proviewon’)

fecom(’curtabCase’,{’Top sensor’;’Bottom sensor’;’Top Actuator’;’Bottom Actuator’}) %

And each actuator/sensor can be visualized separately:

4.6. PIEZOELECTRIC SENSORS AND ACTUATORS 91

Figure 4.28: Mesh of the piezoelectric accelerometer attached to a piezoelectric shaker

Figure 4.29: Top and bottom electrodes for shaker voltage actuator and accelerometer voltage sensor

92 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

% Visualize Vin electrode

fecom curtabcases Vin-Shaker %

% Visualize VSens electrode

fecom curtabcases ’V-Top sensor’

Figure 4.30: Shaker input voltage(left) and accelerometer output voltage(right)

We can have an overview of the electrodes and associated electrical dofs (Figure 4.31) :

r1=p_piezo(’TabInfo’,model); % List piezo related properties

Figure 4.31: Electrodes and associated nodes/dofs

After meshing, the script to obtain the sensitivity (voltage output of the sensor - electrical dof on
Node 17, divided by imposed voltage on piezoelectric shaker - electrical dof on Node 856) is given
below and leads to the result presented on Figure 4.32

4.6. PIEZOELECTRIC SENSORS AND ACTUATORS 93

ofact(’silent’); f=logspace(3,5.3,400)’;

model=stack_set(model,’info’,’oProp’,mklserv_utils(’oprop’,’CpxSym’));

d1=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,f(:))); % direct refer frf

% Project on sensor and create output

sens=fe_case(model,’sens’);

C1=fe_case(’SensObserve -DimPos 2 3 1’,sens,d1);

C1=sdsetprop(C1,’PlotInfo’,’sub’,’magpha’,’scale’,’xlin;ylog’);

ci=iiplot;

iicom(ci,’curveInit’,C1.name,C1); iicom(’submagpha’);

d_piezo(’setstyle’,ci);

% End of script

Figure 4.32: Sensor sensitivity (VSens/Base displ)

94 CHAPTER 4. SENSORS AND ACTUATORS DEFINITION

5

Methods for meshing plates
with piezoelectric patches

Contents

5.1 Manual meshing . 82

5.2 Automated inclusion of piezo patches . 87

5.3 Using predefined patches . 96

96 CHAPTER 5. METHODS FOR MESHING PLATES WITH PIEZOELECTRIC PATCHES

This section explains how to mesh plates with piezoelectric patches of different shapes. In all cases,
multi-layer plate elements are used to represent the host plate and the additional piezoelectric layers.
The first (basic) strategy consists in assigning additional layers with given piezoelectric properties
to regions of the mesh. The second approach uses a script to remesh locally the plate and add
piezoelectric layers according to a predefined set of patch shapes and piezoelectric properties.

5.1 Manual meshing

We consider again the example treated in section 4.6.2 , represented in Figure 4.19. The material
properties of the aluminum plate and the piezoceramic patches are given in Table 4.1. The thickness
of the plate is 1.2mm, and the piezoelectric material corresponds to the SONOX P502 iso material
in m piezo Database.

The first step for manual meshing consists in meshing the plate as follows:

% See full example in d_piezo(’ScriptTutoPlateMeshingBasics’)

d_piezo(’DefineStyles’);

%% Step 1 - Mesh the plate

model=struct(’Node’,[1 0 0 0 0 0 0],’Elt’,[]);

model=feutil(’addelt’,model,’mass1’,1);

% Note that the extrusion values are chosen to include the patch edges

dx=[linspace(0,15,3) linspace(15,15+55,10) linspace(15+55,463-5,50) 463];

model=feutil(’extrude 0 1 0 0’,model,.001*unique(dx));

dy=[linspace(0,12,3) linspace(12,12+25,5) linspace(12+25,63,5) ...

linspace(63,63+25,5) linspace(63+25,100,3)];

model=feutil(’extrude 0 0 1 0’,model,.001*unique(dy));

Note that the meshing is such that the patch edges corresponds to limits of elements in the mesh. It
is then possible to divided the mesh in different groups, related to the two areas where the patches
are added, and the host structure with no piezoelectric properties. Then a different ProID is set for
the regions with piezoelectric patches.

%% Step 2 - Set patch areas and set different properties

model.Elt=feutil(’divide group 1 withnode{x>.015 & x<.07 & y>.013 & y<.037 }’,model);
model.Elt=feutil(’divide group 2 withnode{x>.015 & x<.07 & y>.064 & y<.088 }’,model);
model.Elt=feutil(’set group 1 proId3’,model);

model.Elt=feutil(’set group 2 proId4’,model);

5.1. MANUAL MESHING 97

Visualizing the mesh and using fe com(’colordatapro’) (see Figure 5.1) allows to check that dif-
ferent properties have been assigned to the two regions where piezoelectric patches need to be added.

Figure 5.1: Mesh of the composite plate. The different colours represent the different groups

The next step is to define the material properties for the host structure and the patches. Here,
Sonox P502 iso is used:

%% Step 3 - Material Properties

model.pl=m_elastic(’dbval 1 Aluminum’);

model.pl=m_piezo(model.pl,’dbval 3 -elas2 SONOX_P502_iso’);

% To avoid warning due to the use of simplified piezo properties.

model=p_piezo(’DToSimple’,model)

Piezoelectric material properties are divided in two parts. The first one (ProId 3 here) contains
the piezoelectric data, and is linked to elastic properties with ProID 2 in this example through the
-elas2 command. If the piezoelectric properties do not exist in the database, it is always possible
to introduce them by hand with the following commands:

98 CHAPTER 5. METHODS FOR MESHING PLATES WITH PIEZOELECTRIC PATCHES

model.pl=m_elastic(’dbval 1 Aluminum’);

d=zeros(1,18); d([11 13])=560e-12; d([3 6])=-185e-12; d(9)=440e-12;

eps=zeros(1,9); eps([1 5 9])= 8.854e-12*1850;

% elasid |dij coeff | dielectric coeffs

model.pl=[model.pl zeros(1,24);

3 fe_mat(’m_piezo’,’SI’,2) 2 d eps;

2 fe_mat(’m_elastic’,’SI’,1) 54e9 0.41 7740 zeros(1,25)];

The piezoelectric and dielectric coefficients are stored in a vector of 18 (3x6 matrix) and 9 (3x3
matrix) values respectively. For more information see m piezo 2:General 3D piezo.

Now that the material properties have been defined, it is necessary to create laminates with three
layers, the top and bottom layers being made of the piezoelectric material (ProID 3), of thickness
0.25mm and the middle layer being the host structure made of aluminum with thickness 1.2mm.

%% Step 4 - Laminate properties and piezo electrodes

model.il=p_shell(’dbval 1 laminate 1 1.2e-3 0’, ...

’dbval 2 laminate 3 2.5e-4 0 1 1.2e-3 0 3 2.5e-4 0’);

The last step consists in assigning electrodes to each patch, and an electrical dof id. This single dof
represents the difference of voltage between the top and bottom electrode and is the same for all
elements in the piezoelectric patch, as the electrodes impose equipotentiality. Here for example, dof
1682.21 is assigned to the first layer of group 1, and dof 1683.21 to the third layer of the same group.

%%% Piezo electrodes

%%% NdNb LayerID NdNb LayerID

model.il=p_piezo(model.il,’dbval 3 shell 2 1682 1 0 1683 3 0’);

model.il=p_piezo(model.il,’dbval 4 shell 2 1684 1 0 1685 3 0’);

We can now check that the patches are implemented properly by computing the static response to
an applied voltage to the patch in group 1 (bottom). The layers are numbered from bottom to top,
so it corresponds to dof 1682.21. Note that in order to find the top and bottom of an element for
more complex (curved) meshes, it is possible to use the following command to show the orientation
of the normal of the elements (Figure 5.2):

%% Step 5 - show orientation of the normal

cf=feplot(model); fecom(’showmap’); fecom(’view3’);

% scale properly

fecom(’scalecoeff 1e-10’); fecom(’showmap’)

cf.mdl.name=’Plate_4pzt_Normal_Orient’; d_piezo(’SetStyle’,cf); feplot(cf);

5.1. MANUAL MESHING 99

Figure 5.2: Mesh of the plate with arrows showing the orientation of the normals to the elements

100 CHAPTER 5. METHODS FOR MESHING PLATES WITH PIEZOELECTRIC PATCHES

The electrical dof corresponds to the difference of electrical potential between the top and bottom
electrodes, so if one applies a difference of potential of 1V , it results in a negative electric field which
is in the opposite direction of the poling direction (always in the positive z (normal) direction for
a plate element). Because the d31 and d32 are negative coefficient, the resulting strain is positive
(negative electric field multiplied by negative constant). A positive strain at the bottom of the plate
should result in an upward motion of the tip of the beam, which is verified (Figure 5.3).

%% Step 6 - Compute and display response to static imposed voltage

model=fe_case(model,’FixDof’,’Cantilever’,’x==0 -DOF 1:6’);

model=fe_case(model,’DofSet’,’V-Act’,struct(’def’,1,’DOF’,1682.21)); %Act

model=p_piezo(’ElectrodeSensQ 1683 Q-S1’,model);

model=p_piezo(’ElectrodeSensQ 1684 Q-S2’,model);

model=p_piezo(’ElectrodeSensQ 1685 Q-S3’,model);

model=fe_case(model,’SensDof’,’Tip’,1054.03); % Displ sensor top right corner

sens=fe_case(model,’sens’);

model=fe_case(model,’FixDof’,’SC*1683-1685’,[1682:1685]+.21);

d0=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0)); % direct refer frf at 0Hz

cf=feplot(model,d0); fecom(’;view3;colordatagroup;undefline’);

cf.mdl.name=’Plate_4pzt’; d_piezo(’SetStyle’,cf);

d=sens.cta(4,:)*d0.def % Tip displacement is positive.

The script above also defines three charge sensors on dofs 1683.21, 1684.21 and 1685.21. If the
electrodes are not short-circuited, it would result in a zero-charge measured, so the electrical dofs
are set to zero for these three patches so that a resultant charge can be measured.

To implement a piezoelectric patch on a single side of the plate, it is important to treat properly the
offset, as the layer sequence is not symmetric with respect to the neutral plane of the plate. This is
done by using the z 0 parameter when defining the laminates. z0 corresponds to the distance from
the mid-plane to the bottom of the plate (see sdtweb(’p shell’)). The following script is the same
as the previous one but with piezoelectric patches only on the bottom of the plate, in which case
the offset should be z0 = −0.6mm− 0.25mm = −0.85mm where 0.6mm is half the thickness of the
support plate and 0.25mm is the thickness of the piezo.

%% Step 7 - Piezoelectric patches on the bottom only

model=struct(’Node’,[1 0 0 0 0 0 0],’Elt’,[]);

model=feutil(’addelt’,model,’mass1’,1);

% Note that the extrusion values are chosen to include the patch edges

dx=[linspace(0,15,3) linspace(15,15+55,10) linspace(15+55,463-5,50) 463];

model=feutil(’extrude 0 1 0 0’,model,.001*unique(dx));

dy=[linspace(0,12,3) linspace(12,12+25,5) linspace(12+25,63,5) ...

5.1. MANUAL MESHING 101

Figure 5.3: Static response to a unit voltage application on one of the bottom piezoelectric patches

102 CHAPTER 5. METHODS FOR MESHING PLATES WITH PIEZOELECTRIC PATCHES

linspace(63,63+25,5) linspace(63+25,100,3)];

model=feutil(’extrude 0 0 1 0’,model,.001*unique(dy));

% Set patch areas as set different properties

model.Elt=feutil(’divide group 1 withnode{x>.015 & x<.07 & y>.013 & y<.037 }’,model);
model.Elt=feutil(’divide group 2 withnode{x>.015 & x<.07 & y>.064 & y<.088 }’,model);
model.Elt=feutil(’set group 1 proId3’,model);

model.Elt=feutil(’set group 2 proId4’,model);

%% Material Properties

model.pl=m_elastic(’dbval 1 Aluminum’);

model.pl=m_piezo(model.pl,’dbval 3 -elas2 SONOX_P502_iso’);

% To avoid warning due to the use of simplified piezo properties.

model=p_piezo(’DToSimple’,model)

%% Laminate properties and piezo electrodes

% This is where an offset must be specified

%(else z0=-7.25e-4 (half of total thickness which is not correct).

model.il=p_shell(’dbval 1 laminate 1 1.2e-3 0’, ...

’dbval 2 laminate z0=-8.5e-4 3 2.5e-4 0 1 1.2e-3 0 ’);

%%% Piezo electrodes

%%% NdNb LayerID

model.il=p_piezo(model.il,’dbval 3 shell 2 1682 1 0 ’);

model.il=p_piezo(model.il,’dbval 4 shell 2 1684 1 0 ’);

%% Static response computation

model=fe_case(model,’FixDof’,’Cantilever’,’x==0 -DOF 1:6’);

model=fe_case(model,’DofSet’,’V-Act’,struct(’def’,1,’DOF’,1682.21)); %Act

model=p_piezo(’ElectrodeSensQ 1684 Q-S2’,model);

model=fe_case(model,’SensDof’,’Tip’,1054.03); % Displ sensor top right corner

sens=fe_case(model,’sens’);

model=fe_case(model,’FixDof’,’SC*1682-1684’,[1682 1684]+.21);

d0=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,0)); % direct refer frf at 0Hz

feplot(model,d0); fecom(’;view3;colordatagroup;undefline’);

d2=sens.cta(2,:)*d0.def % Tip displacement is positive.

disp([’difference of static response’ num2str((d2-d)/d*100) ’%’])

The results show that the plate with only one piezoelectric element on the bottom is less stiff then
the case with piezos on both the top and bottom: the tip displacement is 25% higher (3.17 µm/V

5.2. AUTOMATED INCLUSION OF PIEZO PATCHES 103

vs 2.52 µm/V) .

When the piezoelectric element is at the top of the plate, then the offset should be equal to the
thickness of the main plate divided by two (negative value).

5.2 Automated inclusion of piezo patches

The automated procedure requires the plate model to be defined in mm. In order to add the patches,
one needs to make a structure which contains the initial plate model and a description of the different
patches to be added. In this example, the patches are assigned with +Rect.Sonox P502 iso.5525TH0 25

where the sign +/- specifies if the patch is on the top (+) or the bottom (-) of the plate, the first ar-
gument gives the geometry (Rect for Rectangular), the second argument is the piezoelectric material
type from the database, the next argument is the size (55mm x 25mm here) and the last argument
is the thickness (0.25mm). So the first step is to make the host plate. Here, we define a mesh so
that the edges of the piezoelectric patches will correspond to the mesh (as in the previous example
of meshing manually).

% See full example in d_piezo(’ScriptTutoPlateMeshingAuto’)

d_piezo(’DefineStyles’);

%% Step 1 : model of host plate -

model=struct(’Node’,[1 0 0 0 0 0 0],’Elt’,[]);

model=feutil(’addelt’,model,’mass1’,1);

% Note that the extrusion values are chosen to include the patch edges

dx=[linspace(0,15,3) linspace(15,15+55,10) linspace(15+55,463-5,50) 463];

model=feutil(’extrude 0 1 0 0’,model,unique(dx));

dy=[linspace(0,12,3) linspace(12,12+25,5) linspace(12+25,63,5) ...

linspace(63,63+25,5) linspace(63+25,100,3)];

model=feutil(’extrude 0 0 1 0’,model,unique(dy));

model.unit=’mm’;

% Material Properties

model.pl=m_elastic(’dbval 1 Aluminum’);

% Laminate properties

model.il=p_shell(’dbval 1 -punit mm laminate 1 1.2 0’) % this is to specify in mm

model=fe_case(model,’FixDof’,’Cantilever’,’x==0 -DOF 1:6’);

%

The model should is defined in mm to use the automated procedure. Then we will add four rectan-
gular piezoelectric patches whose size and shape comply with the mesh.

104 CHAPTER 5. METHODS FOR MESHING PLATES WITH PIEZOELECTRIC PATCHES

%% Step 2: Add patches

RG.list={’Name’,’Lam’,’shape’
’Main_plate’, model,’’ % Base structure

’Act1’, ... % name of patch

’BaseId1 -Rect.Sonox_P502_iso.5525TH0_25 +Rect.Sonox_P502_iso.5525TH0_25’, ...

struct(’shape’,’LsRect’, ... % Remeshing strategy (lsutil rect here)

’xc’,15+55/2,’yc’,12+25/2,’alpha’,0,’tolE’,.1)

’Act2’, ... % name of patch

’BaseId1 -Rect.Sonox_P502_iso.5525TH0_25 +Rect.Sonox_P502_iso.5525TH0_25’, ...

struct(’shape’,’LsRect’, ... % Remeshing strategy (lsutil rect here)

’xc’,15+55/2,’yc’,63+25/2,’alpha’,0,’tolE’,.1)

};
mo1=d_piezo(’MeshPlate’,RG);

mo1=stack_rm(mo1,’info’,’Electrodes’); % Obsolete stack field to be removed

% To avoid warning due to the use of simplified piezo properties.

mo1=p_piezo(’DToSimple’,mo1)

The command +Rect.Sonox P502 iso.5525TH0 25 refers to a patch which is added on the top of
the plate (+), is rectangular (Rect), is made of Sonox P502 iso, is of size 55mmx25mm (5525) and
thickness 0.25mm (TH0 25). Then we need to specify the position of the patch with ’xc’ and ’yc’
which correspond to the coordinates of its center. The model obtained is here the same as the one
previously obtained with manual meshing. The static response when actuating the first piezo patch
is then computed:

%% Step 3 : compute response

nd=feutil(’find node x==463 & y==100’,model);

elnd=floor(p_piezo(’electrodedof.*’,mo1)); % Nodes associated to electrodes

mo1=fe_case(mo1,’SensDof’,’Tip’,nd+.03); % Displ sensor

mo1=fe_case(mo1,’DofSet’,’V-Act’,struct(’def’,1,’DOF’,elnd(1)+.21)); %Act

mo1=p_piezo([’ElectrodeSensQ ’ num2str(elnd(1)) ’ Q-Act’],mo1); % Charge sensors

mo1=p_piezo([’ElectrodeSensQ ’ num2str(elnd(2)) ’ Q-S1’],mo1);

mo1=p_piezo([’ElectrodeSensQ ’ num2str(elnd(3)) ’ Q-S2’],mo1);

mo1=p_piezo([’ElectrodeSensQ ’ num2str(elnd(4)) ’ Q-S3’],mo1);

% Fix last 3 elec dofs to measure resultant (charge)

mo1=fe_case(mo1,’FixDof’, ...

[’SC*’ num2str(elnd(2)) ’/’ num2str(elnd(3)) ’/’ num2str(elnd(4))], ...

elnd([2:4])+.21);

sens=fe_case(mo1,’sens’);

5.2. AUTOMATED INCLUSION OF PIEZO PATCHES 105

d1=fe_simul(’dfrf’,stack_set(mo1,’info’,’Freq’,0)); % direct refer frf at 0Hz

d1t=sens.cta(1,:)*d1.def; % Extract tip displ

feplot(mo1,d1);

fecom(’colordatapro’); fecom(’view3’);

Note that the automated meshing introduces the patches in the order of the description, so that
here the first piezoelectric patch is on the bottom (-), and the static response is downwards, as in
the case of manual meshing. This allows to compared the displacement at the tip which has the
same value (2.52 µm/V).

Automated meshing can also be done when the patch edges do not coincide with the mesh of the
host plate. In this case, automated local remeshing is applied around the patches inserted. We take
the example of an initial mesh of the plate with a uniform mesh of prescribed element size (here
around 7 mm). The script to add the four patches is strictly identical, but the result is different due
to the local remeshing.

%% Step 4 : use local remeshing element size is 7 mm

model=feutil(’objectquad 1 1’,[0 0 0;1 0 0;0 1 0], ...

feutil(’refineline 7’,[0 463]), ...

feutil(’refineline 7’,[0 100]));

model.unit=’mm’;

% Material Properties

model.pl=m_elastic(’dbval 1 Aluminum’);

% Laminate properties

model.il=p_shell(’dbval 1 -punit mm laminate 1 1.2 0’) % this is to specify in mm

model=fe_case(model,’FixDof’,’Cantilever’,’x==0 -DOF 1:6’);

%% Add patches

RG.list={’Name’,’Lam’,’shape’
’Main_plate’, model,’’ % Base structure

’Act1’, ... % name of patch

’BaseId1 -Rect.Sonox_P502_iso.5525TH0_25 +Rect.Sonox_P502_iso.5525TH0_25’, ...

struct(’shape’,’LsRect’, ... % Remeshing strategy (lsutil rect here)

’xc’,15+55/2,’yc’,12+25/2,’alpha’,0,’tolE’,.1)

’Act2’, ... % name of patch

’BaseId1 -Rect.Sonox_P502_iso.5525TH0_25 +Rect.Sonox_P502_iso.5525TH0_25’, ...

struct(’shape’,’LsRect’, ... % Remeshing strategy (lsutil rect here)

’xc’,15+55/2,’yc’,63+25/2,’alpha’,0,’tolE’,.1)

};
mo2=d_piezo(’MeshPlate’,RG);

mo2=stack_rm(mo2,’info’,’Electrodes’); % Obsolete stack field to be removed

106 CHAPTER 5. METHODS FOR MESHING PLATES WITH PIEZOELECTRIC PATCHES

% To avoid warning due to the use of simplified piezo properties.

mo2=p_piezo(’DToSimple’,mo2)

nd=feutil(’find node x==463 & y==100’,model);

elnd=floor(p_piezo(’electrodedof.*’,mo2)); % Nodes associated to electrodes

mo2=fe_case(mo2,’SensDof’,’Tip’,nd+.03); % Displ sensor

mo2=fe_case(mo2,’DofSet’,’V-Act’,struct(’def’,1,’DOF’,elnd(1)+.21)); %Act

mo2=p_piezo([’ElectrodeSensQ ’ num2str(elnd(1)) ’ Q-Act’],mo2); % Charge sensors

mo2=p_piezo([’ElectrodeSensQ ’ num2str(elnd(2)) ’ Q-S1’],mo2);

mo2=p_piezo([’ElectrodeSensQ ’ num2str(elnd(3)) ’ Q-S2’],mo2);

mo2=p_piezo([’ElectrodeSensQ ’ num2str(elnd(4)) ’ Q-S3’],mo2);

% Fix last 3 elec dofs to measure resultant (charge)

mo2=fe_case(mo2,’FixDof’, ...

[’SC*’ num2str(elnd(2)) ’/’ num2str(elnd(3)) ’/’ num2str(elnd(4))], ...

elnd([2:4])+.21);

sens=fe_case(mo2,’sens’);

d2=fe_simul(’dfrf’,stack_set(mo2,’info’,’Freq’,0)); % direct refer frf at 0Hz

d2t=sens.cta(1,:)*d2.def;

cf=feplot(mo2,d2);

fecom(’;colordatapro;view3;undef line’);

d_piezo(’SetStyle’,cf); feplot(cf);

[d1t d2t]

The values of d1t and d2t correspond to the tip displacement when actuating the first piezo patch,
for the first model where the edges of the piezos correspond to the element sides in the mesh, and
when there is a local remeshing. Due to the effect of the local remeshing (Figure 5.4), there is a
slight difference (≈ 1%). In order to check this effect, we can use a finer mesh of the host structure
and check for the convergence.

%% Step 5 : use a finer mesh to check convergence

ref=[5 3 2];

dt=[d2t];

for ij=1:length(ref)

model=feutil(’objectquad 1 1’,[0 0 0;1 0 0;0 1 0], ...

feutil([’refineline ’ num2str(ref(ij))],[0 463]), ...

feutil([’refineline ’ num2str(ref(ij))],[0 100]));

5.2. AUTOMATED INCLUSION OF PIEZO PATCHES 107

Figure 5.4: Static response to a unit voltage application on one of the bottom piezoelectric patches

model.unit=’mm’;

% Material Properties

model.pl=m_elastic(’dbval 1 Aluminum’);

% Laminate properties

model.il=p_shell(’dbval 1 -punit mm laminate 1 1.2 0’) % this is to specify in mm

model=fe_case(model,’FixDof’,’Cantilever’,’x==0 -DOF 1:6’);

%% Add patches

RG.list={’Name’,’Lam’,’shape’
’Main_plate’, model,’’ % Base structure

’Act1’, ... % name of patch

’BaseId1 -Rect.Sonox_P502_iso.5525TH0_25 +Rect.Sonox_P502_iso.5525TH0_25’, ...

struct(’shape’,’LsRect’, ... % Remeshing strategy (lsutil rect here)

’xc’,15+55/2,’yc’,12+25/2,’alpha’,0,’tolE’,.1)

’Act2’, ... % name of patch

’BaseId1 -Rect.Sonox_P502_iso.5525TH0_25 +Rect.Sonox_P502_iso.5525TH0_25’, ...

struct(’shape’,’LsRect’, ... % Remeshing strategy (lsutil rect here)

’xc’,15+55/2,’yc’,63+25/2,’alpha’,0,’tolE’,.1)

};

108 CHAPTER 5. METHODS FOR MESHING PLATES WITH PIEZOELECTRIC PATCHES

mo2=d_piezo(’MeshPlate’,RG);

mo2=stack_rm(mo2,’info’,’Electrodes’); % Obsolete stack field to be removed

% To avoid warning due to the use of simplified piezo properties.

mo2=p_piezo(’DToSimple’,mo2)

nd=feutil(’find node x==463 & y==100’,model);

elnd=floor(p_piezo(’electrodedof.*’,mo2)); % Nodes associated to electrodes

mo2=fe_case(mo2,’SensDof’,’Tip’,nd+.03); % Displ sensor

mo2=fe_case(mo2,’DofSet’,’V-Act’,struct(’def’,1,’DOF’,elnd(1)+.21)); %Act

mo2=p_piezo([’ElectrodeSensQ ’ num2str(elnd(1)) ’ Q-Act’],mo2); % Charge sensors

mo2=p_piezo([’ElectrodeSensQ ’ num2str(elnd(2)) ’ Q-S1’],mo2);

mo2=p_piezo([’ElectrodeSensQ ’ num2str(elnd(3)) ’ Q-S2’],mo2);

mo2=p_piezo([’ElectrodeSensQ ’ num2str(elnd(4)) ’ Q-S3’],mo2);

% Fix last 3 elec dofs to measure resultant (charge)

mo2=fe_case(mo2,’FixDof’, ...

[’SC*’ num2str(elnd(2)) ’/’ num2str(elnd(3)) ’/’ num2str(elnd(4))], ...

elnd([2:4])+.21);

sens=fe_case(mo2,’sens’);

d2=fe_simul(’dfrf’,stack_set(mo2,’info’,’Freq’,0)); % direct refer frf at 0Hz

d2t=sens.cta(1,:)*d2.def;

dt=[dt; d2t];

end

gf=figure; plot([7 ref],1e6*dt,’linewidth’,2); set(gca, ’XDir’,’reverse’);

set(gca,’Fontsize’,15); v=get(gca,’XLim’); hold on;

plot(v,1e6*[d1t d1t],’r’,’linewidth’,2);

legend(’Local remeshing’,’Conforming mesh’)

xlabel(’mesh size (mm)’); ylabel(’tip displacement (mm/V)’)

We see that when the plate mesh is finer (Figure 5.5), the local effect of remeshing is less and we
converge to the tip displacement when the piezoelectric patch edges coincide with the mesh.

A last example is the addition of circular patches, where we also check for convergence. The in-
troduction of circular patches is done with the arguments -Disk.Sonox P502 iso.RC10TH0 25 and
+Disk.Sonox P502 iso.RC10TH0 25 which specifies a disk made of Sonox P502 iso material with a
radius RC of 10mm and a thickness TH of 0.25 mm (same thickness as the rectangular patches).

5.2. AUTOMATED INCLUSION OF PIEZO PATCHES 109

Figure 5.5: Convergence of the tip displacement when the size of the elements of the main plate
is varied, using local remeshing. The red line corresponds to the tip displacement with the mesh
conforming with the patch edges

%% Step 6 : with circular patches

model=feutil(’objectquad 1 1’,[0 0 0;1 0 0;0 1 0], ...

feutil(’refineline 7’,[0 463]), ...

feutil(’refineline 7’,[0 100]));

model.unit=’mm’;

%%%%%% Material Properties

model.pl=m_elastic(’dbval 1 Aluminum’);

%%%%% Laminate properties

model.il=p_shell(’dbval 1 -punit mm laminate 1 1.2 0’) % this is to specify in mm

model=fe_case(model,’FixDof’,’Cantilever’,’x==0 -DOF 1:6’);

RG.list={’Name’,’Lam’,’shape’
’Main_plate’, model,’’ % Base structure

’Act1’, ... % name of patch

’BaseId1 -Disk.Sonox_P502_iso.RC10TH0_25 +Disk.Sonox_P502_iso.RC10TH0_25’, ...

struct(’shape’,’lscirc’,’xc’,15+55/2,’yc’,12+25/2),

’Act2’, ... % name of patch

’BaseId1 -Disk.Sonox_P502_iso.RC10TH0_25 +Disk.Sonox_P502_iso.RC10TH0_25’, ...

110 CHAPTER 5. METHODS FOR MESHING PLATES WITH PIEZOELECTRIC PATCHES

struct(’shape’,’lscirc’,’xc’,15+55/2,’yc’,63+25/2)};

%

mo3=d_piezo(’MeshPlate’,RG);

mo3=stack_rm(mo3,’info’,’Electrodes’); % Old Stack not necessary or should be set to 0

mo3.pl([3 5 7 9],7)=0; % Set damping to zero in Noliac otherwise complex static response

% To avoid warning due to the use of simplified piezo properties.

mo3=p_piezo(’DToSimple’,mo3)

nd=feutil(’find node x==463 & y==100’,model);

elnd=floor(p_piezo(’electrodedof.*’,mo3)); % Nodes associated to electrodes

mo3=fe_case(mo3,’SensDof’,’Tip’,nd+.03); % Displ sensor

mo3=fe_case(mo3,’DofSet’,’V-Act’,struct(’def’,1,’DOF’,elnd(1)+.21)); %Act

mo3=p_piezo([’ElectrodeSensQ ’ num2str(elnd(1)) ’ Q-Act’],mo3); % Charge sensors

mo3=p_piezo([’ElectrodeSensQ ’ num2str(elnd(2)) ’ Q-S1’],mo3);

mo3=p_piezo([’ElectrodeSensQ ’ num2str(elnd(3)) ’ Q-S2’],mo3);

mo3=p_piezo([’ElectrodeSensQ ’ num2str(elnd(4)) ’ Q-S3’],mo3);

% Fix last 3 elec dofs to measure resultant (charge)

mo3=fe_case(mo3,’FixDof’, ...

[’SC*’ num2str(elnd(2)) ’/’ num2str(elnd(3)) ’/’ num2str(elnd(4))], ...

elnd([2:4])+.21);

sens=fe_case(mo3,’sens’);

d3=fe_simul(’dfrf’,stack_set(mo3,’info’,’Freq’,0)); % direct refer frf at 0Hz

d3t=sens.cta(1,:)*d3.def; % First electrode is on top now ?

feplot(mo3,d3)

fecom(’;colordatapro;view3;undef line’)

d_piezo(’setstyle’,cf);

iimouse(’view’,gca,[-1499 -1955 1462 -248.6 -325.7 275.9 0.30 0.40 0.87 2.20]); % obtained with iimouse(’cv’)

The local remeshing can be see in Figure 5.6.

%% Step 7 : Check convergence

ref=[5 3 2];

dt=[d3t];

5.2. AUTOMATED INCLUSION OF PIEZO PATCHES 111

Figure 5.6: Static response to a unit voltage application on one of the bottom circular piezoelectric
patches

for ij=1:length(ref)

model=feutil(’objectquad 1 1’,[0 0 0;1 0 0;0 1 0], ...

feutil([’refineline ’ num2str(ref(ij))],[0 463]), ...

feutil([’refineline ’ num2str(ref(ij))],[0 100]));

model.unit=’mm’;

% Material Properties

model.pl=m_elastic(’dbval 1 Aluminum’);

% Laminate properties

model.il=p_shell(’dbval 1 -punit mm laminate 1 1.2 0’) % this is to specify in mm

model=fe_case(model,’FixDof’,’Cantilever’,’x==0 -DOF 1:6’);

RG.list={’Name’,’Lam’,’shape’
’Main_plate’, model,’’ % Base structure

’Act1’, ... % name of patch

’BaseId1 -Disk.Sonox_P502_iso.RC10TH0_25 +Disk.Sonox_P502_iso.RC10TH0_25’, ...

struct(’shape’,’lscirc’,’xc’,15+55/2,’yc’,12+25/2),

’Act2’, ... % name of patch

112 CHAPTER 5. METHODS FOR MESHING PLATES WITH PIEZOELECTRIC PATCHES

’BaseId1 -Disk.Sonox_P502_iso.RC10TH0_25 +Disk.Sonox_P502_iso.RC10TH0_25’, ...

struct(’shape’,’lscirc’,’xc’,15+55/2,’yc’,63+25/2)};

%

mo3=d_piezo(’MeshPlate’,RG);

mo3=stack_rm(mo3,’info’,’Electrodes’); % Old Stack not necessary or should be set to 0

mo3.pl([3 5 7 9],7)=0; % Set damping to zero in Noliac otherwise complex static response

% To avoid warning due to the use of simplified piezo properties.

mo3=p_piezo(’DToSimple’,mo3)

nd=feutil(’find node x==463 & y==100’,model);

elnd=floor(p_piezo(’electrodedof.*’,mo3)); % Nodes associated to electrodes

mo3=fe_case(mo3,’SensDof’,’Tip’,nd+.03); % Displ sensor

mo3=fe_case(mo3,’DofSet’,’V-Act’,struct(’def’,1,’DOF’,elnd(1)+.21)); %Act

mo3=p_piezo([’ElectrodeSensQ ’ num2str(elnd(1)) ’ Q-Act’],mo3); % Charge sensors

mo3=p_piezo([’ElectrodeSensQ ’ num2str(elnd(2)) ’ Q-S1’],mo3);

mo3=p_piezo([’ElectrodeSensQ ’ num2str(elnd(3)) ’ Q-S2’],mo3);

mo3=p_piezo([’ElectrodeSensQ ’ num2str(elnd(4)) ’ Q-S3’],mo3);

% Fix last 3 elec dofs to measure resultant (charge)

mo3=fe_case(mo3,’FixDof’, ...

[’SC*’ num2str(elnd(2)) ’/’ num2str(elnd(3)) ’/’ num2str(elnd(4))], ...

elnd([2:4])+.21);

sens=fe_case(mo3,’sens’);

d3=fe_simul(’dfrf’,stack_set(mo3,’info’,’Freq’,0)); % direct refer frf at 0Hz

d3t=sens.cta(1,:)*d3.def; % First electrode is on top now ?

dt=[dt; d3t];

end

gf=figure; plot([7 ref],1e6*(dt),’linewidth’,2); set(gca, ’XDir’,’reverse’);

set(gca,’Fontsize’,15)

xlabel(’mesh size (mm)’); ylabel(’tip displacement (mm/V)’)

The convergence of the tip displacement can be see in Figure 5.7. Note that the tip displacement is
about 5 times smaller than with the rectangular patches, which is mainly due to the circular shape
(less efficient than the rectangular shape for plate bending).

5.3. USING PREDEFINED PATCHES 113

Figure 5.7: Convergence of the tip displacement when the size of the elements of the main plate is
varied, for a circular piezoelectric patch

5.3 Using predefined patches

The different types of patches that can be integrated in plate meshes can be seen by typing the
command m piezo ’patch’. At the moment of writing this documentation, the output is

{’Noliac.NCE51.RC12TH1’ } {’Noliac, material, disk ODiameter and THickness’}
{’SmartM.MFC-P1.2814’ } {’Smart materials MFC d33, .WiLe (dims mm)’ }
{’SmartM.MFC-P2.2814’ } {’Smart materials MFC d31, .WiLe (dims mm)’ }
{’Disk.Material.RC12TH1’ } {’Circular patch, material, geometry’ }
{’Rect.Material.2814TH_5’} {’Rectangular patch, material, geometry’ }

The last two types of patches are the ones used in the previous scripts, which correspond to rectangu-
lar and circular patches, for which the material can be chosen, as well as the geometrical properties.
The Noliac patch is a disk, and could be described with the generic Disk.Material.RCXXTHX com-
mand.

There also exist on the market packaged piezoelectric patches which are made of several layers, such
as the Macro Fiber Composite (https://smart-material.com). The properties of the different layers
are described in more details in section ?? . Two types of MFCs exist (P1, and P2).
The following example is the integration of two P1-type MFC patches on a beam, modeled with
multi-layer shell elements. The example is further discussed in section ?? , the resulting mesh is
represented in Figure 5.8.

114 CHAPTER 5. METHODS FOR MESHING PLATES WITH PIEZOELECTRIC PATCHES

% See full example in d_piezo(’ScriptTutoPlateMeshingMFC’)

d_piezo(’DefineStyles’);

%% Step 1 : Create mesh. Geometric properties in the manual

RO=struct(’L’,463,’w’,50,’a’,85,’b’,28,’c’,15,’d’,11);

% create a rectangle with targetl = 3 mm

model=feutil(’objectquad 1 1’,[0 0 0;1 0 0;0 1 0], ...

feutil(’refineline 5’,[0 RO.c+[0 RO.a] RO.L]), ...

feutil(’refineline 5’,[0 RO.d+[0 RO.b] RO.w]));

%%%%% Material Properties for supporting plate

model.pl=m_elastic(’dbval 1 -unit MM Aluminum’); % Aluminum

model.il=p_shell(’dbval 1 -punit MM laminate 1 1 0’);

model.unit=’MM’;

RG.list={’Name’,’Lam’,’shape’
’Main_plate’, model,’’ % Base structure

’Act1’, ... % name of patch

’BaseId1 +SmartM.MFC-P1.8528 -SmartM.MFC-P1.8528’, ... % Layout definition

struct(’shape’,’LsRect’, ... % Remeshing strategy (lsutil rect here)

’xc’,RO.c+RO.a/2,’yc’,RO.d+RO.b/2,’alpha’,0,’tolE’,.1)

};

mo1=d_piezo(’MeshPlate’,RG);

cf=feplot(mo1); fecom(’;colordatapro;view3’);

cf.mdl.name=’MFC plate mesh’; % Model name for title

d_piezo(’setstyle’,cf)

5.3. USING PREDEFINED PATCHES 115

Figure 5.8: Mesh of the plate with MFC transducers on top and bottom. The different colours
represent the different groups

116 CHAPTER 5. METHODS FOR MESHING PLATES WITH PIEZOELECTRIC PATCHES

6

Model reduction and I/O
state-space models

Contents

6.1 Model reduction theory . 100

6.1.1 General framework . 100

6.1.2 Normal mode models . 101

6.2 State space models . 102

6.2.1 General theory . 102

6.2.2 State-space formulations with static correction 103

6.2.3 State-space models with static correction: illustration on the tower example 104

6.3 State-space models with imposed displacement and acceleration 105

6.3.1 State-space models with imposed displacement 106

6.3.2 State-space models with imposed acceleration 108

6.3.3 Model reduction and state-space models for piezoelectric structures 113

6.4 State-space models and Craig-Bampton model reduction 116

6.4.1 State-space models with imposed displacements using CB matrices 117

6.4.2 State-space models with imposed accelerations 121

6.4.3 State-space models with imposed voltage (piezoelectric actuators) 124

118 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

6.1 Model reduction theory

Finite element models of structures need to have many degrees of freedom to represent the geomet-
rical details of complex structures. For models of structural dynamics, one is however interested
in

• a restricted frequency range (s = iω ∈ [ω1 ω2])

• a small number of inputs and outputs (b, c)

• a limited parameter space α (updated physical parameters, design changes, non-linearities, etc.)

These restrictions on the expected predictions allow the creation of low order models that accurately
represent the dynamics of the full order model in all the considered loading/parameter conditions.

6.1.1 General framework

Model reduction procedures are discrete versions of Ritz/Galerkin analyzes: they seek solutions in
the subspace generated by a reduction matrix T . Assuming {q} = [T] {qR}, the second order finite
element model (4.1) is projected as follows[

T TMTs2 + T TCTs+ T TKT
]
NR×NR

{qR(s)} =
[
T T b

]
NR×NA

{u(s)}NA×1

{y(s)}NS×1 = [cT]NS×NR {qR(s)}NR×1

(6.1)

Modal analysis, model reduction, component mode synthesis, and related methods all deal with an
appropriate selection of singular projection bases ([T]N×NR with NR ≪ N). This section summa-
rizes the theory behind these methods with references to other works that give more details.

The solutions provided by SDT make two further assumptions which are not hard limitations but
allow more consistent treatments while covering all but the most exotic problems. The projection is
chosen to preserve reciprocity (left multiplication by T T and not another matrix). The projection
bases are assumed to be real.

An accurate model is defined by the fact that the input/output relation is preserved for a given
frequency and parameter range

[c] [Z(s, α)]−1 [b] ≈ [cT]
[
T TZ(s, α)T

]−1 [
T T b

]
(6.2)

where Z(s, α) is the dynamic flexibility Z(s) =
[
K + Cs+Ms2

]
for a given set of parameters α

Traditional modal analysis, combines normal modes and static responses. Component mode synthe-
sis (CMS) methods extend the selection of boundary conditions used to compute the normal modes.
The SDT further extends the use of reduction bases to parameterized problems.

6.1. MODEL REDUCTION THEORY 119

A key property for model reduction methods is that the input/output behavior of a model only
depends on the vector space generated by the projection matrix T . Thus range(T) = range(T̃)
implies that

[cT]
[
T TZT

]−1 [
T T b

]
=

[
cT̃

] [
T̃ TZT̃

]−1 [
T̃ T b

]
(6.3)

This equivalence property is central to the flexibility provided by the SDT in CMS applications
(it allows the decoupling of the reduction and coupled prediction phases) and modeshape expansion
methods (it allows the definition of a static/dynamic expansion on sensors that do not correspond
to DOFs).

6.1.2 Normal mode models

Normal modes are defined by the eigenvalue problem(
−ω2

j [M] + [K]
)
N×N

{ϕj}N×1 = {0}N×1 (6.4)

based on inertia properties (represented by the positive definite mass matrix M) and underlying
elastic properties (represented by a positive semi-definite stiffness K). The matrices being positive,
there are N independent eigenvectors {ϕj} (forming a matrix noted [ϕ]) and eigenvalues ω2

j (forming

a diagonal matrix noted
[
\ω2

j \

]
).

As solutions of the eigenvalue problem (6.4), the full set ofN normal modes verify two orthogonality
conditions with respect to the mass and the stiffness

[ϕ]T [M] [ϕ] =
[
\µj\

]
N×N

and [ϕ]T [K] [ϕ] =
[
\µjω

2
j \

]
(6.5)

where µ is a diagonal matrix of modal masses (which are quantities depending uniquely on the way
the eigenvectors ϕ are scaled).

In the SDT, the normal modeshapes are assumed to be mass normalized so that [µ] = [I] (implying

[ϕ]T [M] [ϕ] = [I] and [ϕ]T [K] [ϕ] =
[
\ω2

j \

]
). The mass normalization of modeshapes is indepen-

dent from a particular choice of sensors or actuators.

Another traditional normalization is to set a particular component of ϕ̃j to 1. Using an output shape
matrix this is equivalent to clϕ̃j = 1 (the observed motion at sensor cl is unity). ϕ̃j , the modeshape
with a component scaled to 1, is related to the mass normalized modeshape by ϕ̃j = ϕj/(clϕj).

mj(cl) = (clϕj)
−2 (6.6)

is called the modal or generalized mass at sensor cl.

120 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

6.2 State space models

6.2.1 General theory

While normal mode models are appropriate for structures, state-space models allow the represen-
tation of more general linear dynamic systems and are commonly used in the Control Toolbox or
Simulink. The standard form for state space-models is

{ẋ} = [A] {x(t)}+ [B] {u(t)}
{y} = [C] {x(t)}+ [D] {u(t)} (6.7)

with inputs {u}, states {x} and outputs {y}. State-space models are represented in the SDT, as
generally done in other Toolboxes for use with Matlab, using four independent matrix variables a,
b, c, and d (you should also take a look at the LTI state-space object of the Control Toolbox).

The transfer functions from inputs to outputs are described in the frequency domain by

{y(s)} =
(
[C] [s I −A]−1 [B] + [D]

)
{u(s)} (6.8)

A state-space representation of the nominal structural model (4.1) is given by{
q′

q′′

}
=

[
0 I

−M−1K −M−1C

]{
q
q′

}
+

[
0

M−1b

]
{u(t)}

{y(t)} = [c 0]

{
q
q′

} (6.9)

The interest of this representation is mostly academic because it does not preserve symmetry (a useful
feature of models of structures associated to the assumption of reciprocity) and because M−1K is
usually a full matrix (so that the associated memory requirements for a realistic finite element model
would be prohibitive). The SDT thus always starts by transforming a model to the normal mode
form and the associated state-space model .

The natural state-space representation of normal mode models (6.4) is given by{
p′

p′′

}
=

[
0 I
−Ω2 −Γ

]{
p
p′

}
+

[
0

ϕT b

]
{u(t)}

{y(t)} = [cϕ 0]

{
p
p′

} (6.10)

Transformations to this form are provided by nor2ss and fe2ss. Note however that, as demon-
strated in section ?? , using strictly the modeshapes in the reduced state-space model is generally
not sufficient to obtain a proper representation of the zeros, which are very important in control ap-
plications. fe2ss uses two different representations for reduced state-space models based on normal
modes and static corrections, which are detailed in the next section.

6.2. STATE SPACE MODELS 121

6.2.2 State-space formulations with static correction

As shown in section ?? , it is possible to augment the basis of modeshapes with static corrections to
applied loads to form an accurate reduction basis. Once the basis is orthonormalized, the additional
vectors due to static corrections appear as additional modes in the basis. The transformation to a
state-space model is straightforward using (6.10), but has the disadvantage to increase considerably
the size of the model if a large number of input forces are considered. An alternative is presented
below.

We recall that the modal decomposition of the flexibility matrix given by:

[
Ms2 +K

]−1
[b] ≈

NR∑
j=1

{ϕj} {ϕj}T [b]

s2 + ω2
j

+

N∑
j=NR+1

{ϕj} {ϕj}T [b]

ω2
j

(6.11)

can be rewritten using (??) as:

[
Ms2 +K

]−1
[b] ≈

NR∑
j=1

{ϕj} {ϕj}T [b]

s2 + ω2
j

+ [K]−1 [b]−
NR∑
j=1

{ϕj} {ϕj}T [b]

ω2
j

(6.12)

which shows that the last two terms are proportional to the input [b] and constant (do not depend
on ω). They can therefore be introduced in matrix d of the state-space model, with matrices a,b
and c corresponding to the case where only the normal modes are retained (6.10). The state-space
model then becomes : {

p′

p′′

}
=

[
0 I
−Ω2 −Γ

]{
p
p′

}
+

[
0

ϕT b

]
{u(t)}

{y(t)} = [cϕ 0]

{
p
p′

}
+ [d] [u]

(6.13)

where

[d] = [c] [K]−1 [b]−
NR∑
j=1

[c] {ϕj} {ϕj}T [b]

ω2
j

(6.14)

The advantage of building the state-space model with such an approach is that the number of degrees
of freedom is not increased, and that the [d] matrix introduces a static contribution which cannot
be destabilized by a controller. It introduces however a non-physical feed-through term which is
directly proportional to the input force. This violates the principles of wave propagation: if the
response to a rectangular impulse is computed for example, the wave should arrive to the sensors
after a time related to the distance and wave velocity in the medium, and here, due to the non-zero
[d] matrix, a part of it arrives instantaneously.

122 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

Building state-space models with static corrections but no additional high-frequency modes can be
done with the option -dterm in fe2ss.

6.2.3 State-space models with static correction: illustration on the tower exam-
ple

The cantilever beam (tower) example presented in section ?? is considered again, and the two
approaches (additional mode and [d] matrix approach) to build a state-space model are illustrated
below

% See full example as MATLAB code in d_piezo(’ScriptTutoTowerSS’)

d_piezo(’DefineStyles’);

%% Step 1 : Build the model and define actuator and sensor

model=d_piezo(’MeshTower’);

% Step 2 : State-space models

[sys,TR] = fe2ss(’free 5 3 0 -dterm’,model);

[sys2,TR2] = fe2ss(’free 5 3 0 ’,model);

w=linspace(0,30*2*pi,2048);% Extended frequency range

C1=qbode(sys,w,’struct’);C1.name=’SS-dterm’;

C2=qbode(sys2,w,’struct’);C2.name=’SS-mode’;

ci=iiplot;

iicom(ci,’curveinit’,{’curve’,C1.name,C1;’curve’,C2.name,C2}); iicom(’submagpha’)

d_piezo(’setstyle’,ci);

%

% End of script

Figure 6.1 shows that with the two approaches, the state-space model gives a correct representation
of the transfer function in the frequency band of interest [0 10] Hz, but that the behavior is different
at higher frequencies. The -dterm option does not introduce a high frequency mode, but the transfer
function does not have a high-frequency roll-off due to the added constant term.

6.3. STATE-SPACE MODELS WITH IMPOSED DISPLACEMENT AND ACCELERATION 123

Figure 6.1: Comparison between state-space models using the d-term approach or the additional
high-frequency mode for static correction

6.3 State-space models with imposed displacement and accelera-
tion

In order to be able to impose a displacement or velocity instead of a mechanical load, the displacement
vector {q} is divided in two contributions:

{q} = [TC] {qC}+ [TI] {qI} (6.15)

where {qI} is the part of {q} on which either a displacement or an acceleration need to be imposed (I
is used as a reference to ”interface”), and {qC} represents the remaining dofs where no displacement
or acceleration is imposed. As will be discussed later, different choices can be used for [TI] and [TC].

We assume a general form of these matrices where the degrees of freedom related to imposed displace-
ment or acceleration in {q}, the associated lines in [TC] must be all zeros, and for the [TI] matrix,
all zeros except one on the column related to this degree of freedom. In doing so, the degrees of
freedom related to {qI} are the physical displacements of the structure where the displacement or
acceleration needs to be imposed.

124 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

If the full finite element model of the structure is used, matrix [T]C is a N ×N identity matrix from
which the columns corresponding to the imposed dofs have been removed.

The strategy to choose matrix [TI] will differ for the case of imposed displacement and acceleration,
as will be detailed below. Using (6.15), the equations of motion (4.2) become (u(t) = 0)

[M] ([TC]
{
q′′C

}
+ [TI]

{
q′′I
}
) + [C] ([TC]

{
q′C

}
+ [TI]

{
q′I
}
) + [K] ([TC] {qC}+ [TI] {qI}) = 0 (6.16)

and after premultiplying by [TC]
T and putting leaving the unknown displacements {qC} to the

left-hand side of the equation, we get

[MCC]
{
q′′C

}
+ [CCC]

{
q′C

}
+ [KCC] {qC} = − [TC]

T (
[M] [TI]

{
q′′I
}
+ [C] [TI]

{
q′I
}
+ [K] [TI] {qI}

)
(6.17)

where [MCC] , [CCC] and [KCC] are the mass, damping and stiffness matrices with fixed boundary
conditions at the degrees of freedom corresponding to {qI}. The subscript C stands for constrained,
as the equations of motion in (6.17) correspond to a dynamic problem for which the degrees of
freedom corresponding to the imposed motion are fixed, and the imposed displacement, velocity or
accelerations correspond to an equivalent mechanical force vector.

As such, it is difficult to build a state-space model from these equations, whether for imposed dis-
placement or acceleration, because only one of the two is imposed and the other is unknown.

6.3.1 State-space models with imposed displacement

For imposed displacement, the typical choice for [TI] consists in taking a matrix which is limited
to the degrees of freedom where the displacement is imposed. All terms on the rows corresponding
to the non-imposed degrees of freedom are therefore equal to 0. In this case, the forces acting on
the structure are limited to the degrees of freedom which are coupled to the interface through the
stiffness, mass, and damping matrices. If the mass matrix is diagonal, there is no such coupling, and
if it is not, the coupling is very weak, so that the forces related to inertia can be neglected. This is
also the case of the damping forces, as long as the damping is small. In such a case, the equations
become

[MCC]
{
qC

′′}+ [CCC]
{
qC

′}+ [KCC] {qC} = − [TC]
T [K] [TI] {qI} (6.18)

where now the forcing vector is only a function of the imposed displacement. With this formulation,
a state-space model can be built using the approach detailed in section ?? , where normal modes of
the system with the imposed dofs set to 0 and a static correction to − [TC]

T [K] [TI] is added. The

6.3. STATE-SPACE MODELS WITH IMPOSED DISPLACEMENT AND ACCELERATION 125

displacement at the imposed dofs can be directly recovered using the [d] matrix if a sensor is defined
at these location, using matric [T]I .

Note that in (6.18), there are as many inputs as there are degrees of freedom in {qI}. This can be
simplified to a single input using an expansion vector such that:

{qI} = {L} q0 (6.19)

where q0 is now a single input scalar displacement to the system, and the right-hand-side of equation
(6.18) reduces to a single vector multiplied by the input displacement q0. The number of necessary
static responses to build the state-space model is therefore also reduced to one instead of the number
of degrees of freedom in {qI}.

The construction of a state-space model with imposed displacement is illustrated below on the same
example of the concrete tower. The function fe2ss is used to build directly the I/O state-space
model from the finite element after defining properly the input (horizontal imposed displacement)
and the output (displacement at the top of the tower)

% See full example as MATLAB code in d_piezo(’ScriptTutoTowerSSUimp’)

d_piezo(’DefineStyles’);

%% Step 1 : Build the model and define actuator and sensor

model=d_piezo(’MeshTower’);

model=d_avc(’meshtower’);

model=fe_case(model,’FixDof’,’Clamped’,[1.06]); % Leave x free for imposed displ

model=fe_case(model,’Remove’,’F-top’); % Remove point force

model=fe_case(model,’DOFSet’,’UImp’,[1.01]); % Imposed horizontal displ

%% Step 2 : Reference method - exact solution + Inertial term neglected - full model

% Build matrices

[model,Case] = fe_case(’assemble NoT -matdes 2 1 Case -SE’,model) ;

% Full model

K0 = feutilb(’tkt’,Case.T,model.K); % Assemble matrices taking into account BCs

F1 = -Case.T’*model.K{2}*Case.TIn; % Loading due to imposed displacement

F2 = -Case.T’*model.K{1}*Case.TIn; % Inertial term

%

% compute response in freq domain

w=logspace(-2,2,2048);

for i=1:length(w)

126 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

U0(:,i)=Case.T*((K0{2}*(1+0.02*1i)-w(i)^2*K0{1})\(F1-w(i)^2*F2)); % Take into account mass term

U1(:,i)=Case.T*((K0{2}*(1+0.02*1i)-w(i)^2*K0{1})\F1); % Stiffness term only

end

CTA = fe_c(model.DOF,21.01); u0 = CTA*U0; u1 = CTA*U1;

% Change output format to be compatible with iicom

C1=d_piezo(’BuildC1’,w’/(2*pi),u0.’,’Tip displ’,’Uimp’); C1.name=’M and K’;

C2=d_piezo(’BuildC1’,w’/(2*pi),u1.’,’Tip displ’,’Uimp’); C2.name=’K only’;

ci=iiplot;iicom(ci,’curveinit’,{’curve’,C1.name,C1;’curve’,C2.name,C2});
iicom(’submagpha’)

d_piezo(’setstyle’,ci);

Figure 6.2 shows that the two curves match perfectly, meaning that the inertial term can indeed
be neglected for the excitation, allowing to build an accurate modal state-space model with a static
correction with the stifness term only, which is done in the following:

Figure 6.2: Transfer function between horizontal displacement at the bottom/top of the beam using
the full model, the loading takes into account both the mass and stiffness terms, or only the stiffness
term

6.3. STATE-SPACE MODELS WITH IMPOSED DISPLACEMENT AND ACCELERATION 127

%% Step 3 : State-space model using SDT (reduced)

sys=fe2ss(’free 5 5 0 -dterm’,model);

u2=freqresp(sys(1,1),w); u2 = u2(:);

% Change output format to be compatible with iicom

C3=d_piezo(’BuildC1’,w’/(2*pi),u2,’Tip displ’,’Uimp’); C3.name=’fe2ss-5md+st’;

ci=iiplot;iicom(ci,’curveinit’,{’curve’,C2.name,C2;’curve’,C3.name,C3});
iicom(’submagpha’)

d_piezo(’setstyle’,ci);

Figure 6.3 compares the frequency response functions used with the full model and direct compu-
tation, and using a state-space model with 5 modes and a static correction for the stiffness loading
term. The match between the two is excellent.

Figure 6.3: Transfer function between horizontal displacement at the bottom/top of the beam using
the full model and the reduced state-space model with 5 modes, the loading takes into account only
the stiffness term

6.3.2 State-space models with imposed acceleration

In the case of imposed acceleration, it is common to write the problem in terms of relative displace-
ments with respect to the base motion, in which case matrix [TI] is not anymore limited to the

128 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

imposed displacements. The approach consists in choosing [TI] as the static response to imposed
displacements, so that it relates to all dofs in the structure. Let us assume that the dofs of the
structure are rearranged so that the matrices can be decomposed in four blocks as previously :[

K̃
]
=

[
[KII] [KIC]
[KCI] [KCC]

]
(6.20)

where the index I corresponds to the imposed dofs. [TI] is then given by the static expansion of
the imposed displacements:

[TI] =

[
I

− [KCC]
−1 [KCI]

]
{q0} (6.21)

where {q0} represents the spatial shape of the imposed acceleration at the specific locations. Such a
representation is general enough to take into account base excitation problems where the excitation
of the base is uniform and in a single direction, such as a uniform translation of the base. In this
case, [TI] represents the rigid body translation of the structure in the direction of the base motion,
and {qC} is the relative motion of the structure with respect to the translation of the base. The
general approach allows also to impose a combination of the six rigid-body modes of the structure.
In this case, the quantity that is withdrawn from the global motion in order to represent the relative
motion is different at each location in the structure in the case where rotational rigid body motions
are present in the base excitation.

Lastly, the approach also allows to take into account base excitations which induce a deformation
of the basis, in which case [TI] is not a rigid body motion but the static expansion of the imposed
displacements on all other dofs of the structure (which reduces to rigid body motions if the imposed
displacement is a translation and/or rotation of the base).

With this type of decomposition, in the case where [TI] is a linear combination of rigid-body motions,
the equations of motion (6.16) reduce to:

[MCC]
{
qC

′′}+ [CCC]
{
q′C

}
+ [KCC] {qC} = − [TC]

T [M] [TI]
{
q′′I
}

(6.22)

because [TI] {qI} represents a combination of rigid body modes so that [K] [TI] {qI} = 0. For damp-
ing models where the damping matrix is proportional to stiffness, the damping term is also equal to
zero, otherwise it can be neglected when damping is small.

When [TI] is not a combination of rigid body modes (i.e. when the imposed acceleration induces
deformation of the base), the stiffness term is given by

[TC]
T [K]

[
I

− [KCC]
−1 [KCI]

]
{qI} =

(
− [KCC] [KCC]

−1 [KCI] + [KCI]
)
{qI} = 0 (6.23)

6.3. STATE-SPACE MODELS WITH IMPOSED DISPLACEMENT AND ACCELERATION 129

so that the stiffness term is also zero (see also in [4]).

With this simplification, it is possible to build a reduced state-space model where the force vector is
related to the inertial term and the imposed acceleration only. Note however that in this case, the
state-space model solves for relative displacements, and that it is not straightforward to obtain the
absolute displacements (if needed), as it would require to know the base displacement, and here it is
the acceleration that is imposed (so one cannot use the [d] matrix here to add the base displacement).

A possible approach is to solve for the absolute displacements by modifying the mass, stiffness and
damping matrices as: [

M̂
]
=

[
I 0
0 [MCC]

]
(6.24)

[
K̂
]
=

[
0 0
0 [KCC]

]
(6.25)

[
Ĉ
]
=

[
0 0
0 [CCC]

]
(6.26)

and the displacement and forcing vectors as

{q} =
{

qI
qC

}
(6.27)

[F] =

[
{q′′0}

− [TC]
T [M] [TI] {q′′0}

]
(6.28)

where {q′′0} is the vector of imposed accelerations.

A state-space representation can be built by projecting these equations in the subspace of the
constrained modeshapes which are the solution of(

−ω2
j [MCC] + [KCC]

)
{ϕj} = {0} (6.29)

The reduced basis (keeping NR modes) noted
[
T̂C

]
is given by :

[
T̂C

]
= [ϕ1...NR] (6.30)

so that

{qC} =
[
T̂C

]
{q̂C} (6.31)

130 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

which leads to the reduced matrices (with mass normalized modeshapes)[
ˆMCC

]
=

[
T̂C

]T
[MCC]

[
T̂C

]
= I ,

[
ˆKCC

]
=

[
T̂C

]T
[KCC]

[
T̂C

]
=

[
\ω2

j \

]
(6.32)

The state-space representation is then given by:
q̇I
˙̂qC
q̈I
¨̂qC

 =

 [0] [I][
0

−
[
T̂C

]T
[K]

[
TI T̂C

]] [
0

−
[
T̂C

]T
[C]

[
TI T̂C

]] 


qI
q̂C
q̇I
˙̂qC

+


0 0
0 0
0 I[

T̂C

]T
b

[
T̂C

]T
[TI]


{

uF
q̈0

}

{y} =
[
c [TI] c

[
T̂C

]
0 0

]
qI
q̂C
q̇I
˙̂qC

+ [0]

{
uF
q′′0

}
(6.33)

With this choice of [T]I , the submatrix −
[
T̂C

]T
[K] [TI] = 0 and the states are fully decoupled. The

method can be used with the alternative representation where TI is taken as the matrix limited to
the imposed displacement (as for the imposed displacement formulation, in which case the subma-

trix −
[
T̂C

]T
[K] [TI] is non-zero and remains in the left-hand-side because {qI} is unknown. The

disadvantage of this formulation is the fact that the state-variables remain coupled in the modal
domain, and that it is necessary to augment the modal basis with static responses to [M] [TI] {q′′0}.
This is not the case with the previous approach, as will be illustrated in the examples.

The general method implemented in SDT to build state-space models with imposed displacements
corresponds to the second case where the states remain coupled, it requires the combination of the
use of fe reduc and nor2ss function and cannot be performed directly with fe2ss. An illustration
is given in the script below. The first calculation is explicit and performed in the frequency domain.
The problem is solved using relative displacements.

% See full example as MATLAB code in d_piezo(’ScriptTutoTowerSSAimp’)

d_piezo(’DefineStyles’);

%% Step 1 : Build the model and define actuator and sensor

model=d_piezo(’MeshTower’);

6.3. STATE-SPACE MODELS WITH IMPOSED DISPLACEMENT AND ACCELERATION 131

model=fe_case(model,’FixDof’,’Clamped’,[1.06]); % Leave x free for imposed displ

model=fe_case(model,’Remove’,’F-top’); % Remove point force

model=fe_case(model,’DOFSet’,’UImp’,[1.01]); % Set an imposed displacement

%% Step 2 : Regular method with RHS M*Tin (relative displacement)

% --------- full model

[model,Case] = fe_case(’assemble NoT -matdes 2 1 Case -SE’,model) ;

K0 = feutilb(’tkt’,Case.T,model.K); % Assemble matrices taking into account BCs

TIn=fe_simul(’static’,model); TIn=TIn.def; % Compute TIn as static response to imposed displacement

F = -Case.T’*model.K{1}*TIn; % Loading due to imposed displacement

% compute response in freq domain (relative displacement)

w=logspace(-2,2,2048);

for i=1:length(w)

U0r(:,i)=Case.T*((K0{2}*(1+0.02*1i)-w(i)^2*K0{1})\F);
end

Uimp=1./(-w.^2); % Imposed displacement for a unit imposed acceleration

% Absolute displacement

for i=1:length(w)

U0(:,i)=U0r(:,i)+Uimp(i)*TIn;

end

CTA = fe_c(model.DOF,21.01); u0 = CTA*U0; u0r = CTA*U0r;

% Change output format to be compatible with iicom

C0=d_piezo(’BuildC1’,w’/(2*pi),u0.’,’u-top’,’Aimp’); C1.name=’Full’;

C1=d_piezo(’BuildC1’,w’/(2*pi),u0r.’,’ur-top’,’Aimp’); C1.name=’Full’;

The next step is to make a state-space model with fe2ss by building the adequate load based on
imposed accelerations. The output of the state-space model is then a relative displacement.

%% Step 3 - State-space with SDT(relative) using a DofLoad

model2=d_piezo(’Meshtower’);

model2=fe_case(model2,’FixDof’,’Clamped’,[1.01 1.06]); % Block all interface dofs

model2=fe_case(model2,’Remove’,’F-top’); % Remove point force

132 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

[model2,Case2] = fe_case(’assemble NoT -matdes 2 1 Case -SE’,model2) ;

SET.DOF=model2.DOF; SET.def=Case2.T*F;

model2=fe_case(model2,’DofLoad’,’AccImp’,SET); %

sysr=fe2ss(’free 5 5 0 -dterm’,model2);

u1r=freqresp(sysr(1,1),w); u1r = u1r(:);

C2=d_piezo(’BuildC1’,w’/(2*pi),u1r,’ur-top’,’Aimp’); C1.name=’fe2ss 5md+st’;

ci=iiplot;iicom(ci,’curveinit’,{’curve’,C1.name,C1;’curve’,C2.name,C2});
iicom(’submagpha’)

d_piezo(’setstyle’,ci);

Figure 6.4 shows the comparison between the response (relative displacement at the top of the tower
divided by imposed acceleration) of the full model computed in the frequency domain, and of the
reduced state-space model using 5 modes and a static correction to the applied load (built from the
acceleration and mass matrix).

Figure 6.4: comparison between the response (relative displacement at the top of the tower divided
by imposed acceleration) of the full model computed in the frequency domain, and of the reduced
state-space model using 5 modes and a static correction

6.3. STATE-SPACE MODELS WITH IMPOSED DISPLACEMENT AND ACCELERATION 133

The approach used in SDT to build a state-space model allowing to obtain directly the absolute
displacement is illustrated in the following:

%% Step 4 : state-space model for absolute displacements

TR2 = fe2ss(’craigbampton 5 5 -basis’,model); % This is a CB basis which is renormalized (so free BCs and rigid body mode)

% TR2.data is needed for nor2ss hence the normalization.

KCB = feutilb(’tkt’,TR2.def,model.K);

sysu= nor2ss(TR2,model) ;

u1=freqresp(sysu(1,1),w); u1=u1(:);

%

C3=d_piezo(’BuildC1’,w’/(2*pi),u1,’u-top’,’Aimp’); C3.name=’fereduc+nor2ss’;

ci=iiplot;iicom(ci,’curveinit’,{’curve’,C0.name,C0;’curve’,C3.name,C3});
iicom(’submagpha’)

d_piezo(’setstyle’,ci);

Figure 6.5 shows that the state-space model obtained with this approach in SDT gives a response
very close to the full model computed in the frequency domain.

134 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

Figure 6.5: Transfer function between horizontal acceleration at the bottom and the absolute dis-
placement at the top of the beam and the imposed horizontal acceleration at the bottom - comparison
of the full model (freq domain computation) and the reduced state-space model with 5 modes and
static correction

6.3.3 Model reduction and state-space models for piezoelectric structures

When building reduced or state-space models to allow faster simulation, the validity of the reduction
is based on assumptions on bandwidth, which drive modal truncation, and considered loads which
lead to static correction vectors.

Modes of interest are associated with boundary conditions in the absence of excitation. For the
electric part, these are given by potential set to zero (grounded or shorted electrodes) and enforced
by actuators (defined as DofSet in SDT in the case of voltage actuators) which in the absence of
excitation is the same as shorting.

Excitation can be mechanical Fmech, charge on free electric potential DOF QIn and imposed voltage
VIn. One thus seeks to solve a problem of the form[

Zqq(s) ZqV

ZV q ZV V

]{
q
V

}
=

{
Fmech

QIn

}
−
[

ZqVIn

ZV VIn

]
{VIn} (6.34)

6.3. STATE-SPACE MODELS WITH IMPOSED DISPLACEMENT AND ACCELERATION 135

The imposed voltage VIn is enforced using a DofSet in SDT and is therefore analogous to an imposed
displacement. The general form of the loads given above can be simplified due to the fact that there
is no coupling terms in the mass matrix between the mechanical and electrical DOFs for full models
of piezoelectric structures (see (4.6)), and the fact that the capacitance matrix [KV V] is diagonal.
The problem is then reduced to[

Zqq(s) ZqV

ZV q ZV V

]{
q
V

}
=

{
Fmech

QIn

}
−
[
KqVIn

0

]
{VIn} (6.35)

Using the classical modal synthesis approach (implemented as fe2ss(’free’)), one builds a Ritz
basis combining modes with grounded electrodes (VIn = 0), static responses to mechanical and
charge loads and static response to enforced potential:

q
V
VIn

 =

 ϕq

ϕV

0

 Z(0)−1

{
Fmech

QIn

}
0

 Z(0)−1

[
KqVIn

0

]
I


qmode

qstat
VIn

 (6.36)

In this basis, one notes that the static response associated with enforced potential VIn does not verify
the boundary condition of interest for the state-space model where VIn = 0. Since it is desirable
to retain the modes with this boundary condition as the first vectors of basis (6.36) and to include
static correction as additional vectors, the strategy used here is to rewrite reduction as

{q} =

 ϕq

ϕV

0

 Z(0)−1

[
Fm KqVIn

QIn 0

]
0

 {qR}+


0
0
VIn

 (6.37)

where the response associated with reduced DOFs qR verifies VIn = 0 and the total response is
found by adding the enforced potential on the voltage DOF only. The presence of this contribution
corresponds to a D term in state-space models. The usual SDT default is to include it as a residual
vector as shown in (6.36), but to retain the shorted boundary conditions, form (6.37) is prefered.

The example of the cantilever beam with 4 piezoelectric transducers detailed in section 4.6.2 is
considered again. A state-space model is built using the first 10 modes and static corrections
discussed above, and the dynamic response is compared to the full-model response.

% See full example in d_piezo(’ScriptTutoPlate4Pzt’)

d_piezo(’DefineStyles’);

%% Step 1 - Build model and visualize

model=d_piezo(’MeshULBplate’); % creates the model

model=fe_case(model,’FixDof’,’Cantilever’,’x==0’); % Clamp plate

% Set modal default zeta = 0.01

136 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

model=stack_set(model,’info’,’DefaultZeta’,0.01);

%% Step 2 - Define actuators and sensors and visualize

nd=feutil(’find node x==463 & y==100’,model);

model=fe_case(model,’SensDof’,’Tip’,{[num2str(nd) ’:z’]}); % Displ sensor

i1=p_piezo(’TabInfo’,model);i1=i1.Electrodes(:,1);

model=fe_case(model,’DofSet’,’V-Act’,struct(’def’,1,’DOF’,i1(1)+.21, ...%Act

’Elt’,feutil(’selelt proid 104’,model))); % Elt defined for display

model=p_piezo(sprintf(’ElectrodeSensQ %i Q-Act’,i1(1)),model); % Charge sensors

model=p_piezo(sprintf(’ElectrodeSensQ %i Q-S1’,i1(2)),model);

model=p_piezo(sprintf(’ElectrodeSensQ %i Q-S2’,i1(3)),model);

model=p_piezo(sprintf(’ElectrodeSensQ %i Q-S3’,i1(4)),model);

% Fix ElectrodeSensQ dofs to measure resultant (charge)

model=fe_case(model,’FixDof’,’SC*S1-S3’,i1(2:end)+.21);

%% Step 3 Compute dynamic response full/state-space and compare

model=stack_set(model,’info’,’oProp’,mklserv_utils(’oprop’,’CpxSym’));

f=linspace(1,100,400); % in Hz

% Full model

d1=fe_simul(’dfrf’,stack_set(model,’info’,’Freq’,f(:))); % direct refer frf

sens=fe_case(model,’sens’); C1=fe_case(’SensObserve -DimPos 2 3 1’,sens,d1);

C1=sdsetprop(C1,’PlotInfo’,’sub’,’magpha’,’scale’,’xlin;ylog’);

% state-space model

[s1,TR1]=fe2ss(’free 5 10 0 -dterm’,model); %

C2=qbode(s1,f(:)*2*pi,’struct’);C2.name=’SS’;

% Compare the two curves

ci=iiplot;

iicom(ci,’curveinit’,{’curve’,C1.name,C1;’curve’,C2.name,C2});
iicom(’submagpha’); d_piezo(’setstyles’,ci)

% End of script

Figures 6.6 and 6.7 show that there is an excellent match between the responses computed with the
full model and the state-space model with 10 modes and static corrections.

6.3. STATE-SPACE MODELS WITH IMPOSED DISPLACEMENT AND ACCELERATION 137

Figure 6.6: Open-loop transfer function between V-Act and tip displacement (left), Q-Act sensor
(right), comparison between, full model and reduced state-space model (10 modes + static corrections
- dterm)

138 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

Figure 6.7: Open-loop transfer function between V-Act and Q-S1 sensor (top-left),Q-S2 sensor (top-
right), Q-S3 sensor (bottom), comparison between, full model and reduced state-space model (10
modes + static corrections - dterm)

6.4 State-space models and Craig-Bampton model reduction

For coupled problems linked to model substructuring, it is traditional to state the problem in terms
of imposed displacements rather than loads. Assuming that the imposed displacements correspond
to DOFs, one seeks solutions of problems of the form[

ZII ZIC

ZCI ZCC

]{
qI
qC

}
=

{
RI

0

}
(6.38)

where the displacement qI are given and the reaction forces RI are non-zero. The exact response
to an imposed harmonic displacement qI is given by

{q} =
[

I

−Z−1
CCZCI

]
{qI} (6.39)

6.4. STATE-SPACE MODELS AND CRAIG-BAMPTON MODEL REDUCTION 139

The first level of approximation is to use a quasistatic evaluation of this response , that is to use
Z(0) = K). Model reduction on this basis is known as static or Guyan condensation [?].

This reduction does not fulfill the requirement of validity over a given frequency range. Craig and
Bampton [?] thus complemented the static reduction basis by fixed interface modes : normal
modes of the structure with the imposed boundary condition qI = 0. These modes correspond to
singularities in ZCC so their inclusion in the reduction basis allows a direct control of the range over
which the reduced model gives a good approximation of the dynamic response.

The Craig-Bampton reduction basis takes the special form{
qI
qC

}
=

[
I 0

−K−1
CCKCI ϕC

]
{qR} (6.40)

where the fact that the additional fixed interface modes have zero components on the interface
DOFs is very useful to allow direct coupling of various component models. fe reduc provides a
solver that directly computes the Craig-Bampton reduction basis.

A major reason of the popularity of the Craig-Bampton (CB) reduction basis is the fact that the
interface DOFs qI appear explicitly in the generalized DOF vector qR, and is a major reason why
the use of Craig-Bampton reduction methods is very popular in the industry.

The major finite elements softwares such as Nastran, Abaqus or Ansys all propose a CB reduction.
In the industry, it is a common practice to share models via CB reduced matrices, therefore keeping
the details of the geometry and material properties confidential. Generally, the degrees of freedom
which are kept in the model are the essential ones, i.e. the ones where forces are applied, or where
the magnitude of displacement, velocity or acceleration needs to be assessed, as well as interface
degrees of freedom if the structure needs to be coupled to one or several others. The question we
address in the next section is how to build an accurate state-space model based on these reduced
matrices only.

6.4.1 State-space models with imposed displacements using CB matrices

As detailed in Section section 6.3.1 , when dealing with a full FE model, the imposed displacement
can be replaced by a force equal to − [TC] [K] [TI] {qI}, neglecting the term related to acceleration.
It turns out that this assumption is not valid after aCB reduction.

It can be easily understood if we consider that only the imposed degrees of freedom are retained in
the CB basis. In that case, [TC] [K] [TI] = [KCI] which, according to (6.23) is equal to zero, and
would result in no load applied to the system. In this specific case, the intertial term is the most

140 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

important one, while the stiffness term is zero, hence it is not possible to build a state-space model
based on the standard approach presented before. This is illustrated below:

% See full example as MATLAB code in d_piezo(’ScriptTutoTowerSSUimpCB1’)

d_piezo(’DefineStyles’);

%% Step 1 : Build Model with imposed displacement

model=d_avc(’meshtower’);

model=fe_case(model,’FixDof’,’Clamped’,[1.06]); % Leave x free for imposed displ

model=fe_case(model,’Remove’,’F-top’); % Remove point force

model=fe_case(model,’DOFSet’,’UImp’,[1.01]); % Leave x free for imposed displ

%% Step 2 : reduce model using CB

% Build matrices

[model,Case] = fe_case(’assemble NoT -matdes 2 1 Case -SE’,model) ;

% Build CB matrices

CB = fe_reduc(’craigbampton 5 5’,model);

TR = CB.TR;

KCB = feutilb(’tkt’,TR.def,model.K); % CB

K0 = feutilb(’tkt’,Case.T,model.K); % Full-model

F = -Case.T’*model.K{2}*Case.TIn;
F1=-KCB{2}(2:end,1);
F2=-KCB{1}(2:end,1);
w=logspace(-2,2,2048);

for i=1:length(w)

U0(:,i)=Case.T*((K0{2}*(1+0.02*1i)-w(i)^2*K0{1})\F); % full model

U1r(:,i)=((KCB{2}(2:end,2:end)*(1+0.02*1i)-w(i)^2*KCB{1}(2:end,2:end))\(F1-w(i)^2*F2)); % CB stiffness and inertia

U2r(:,i)=((KCB{2}(2:end,2:end)*(1+0.02*1i)-w(i)^2*KCB{1}(2:end,2:end))\(F1)); % CB stiffness

U3r(:,i)=((KCB{2}(2:end,2:end)*(1+0.02*1i)-w(i)^2*KCB{1}(2:end,2:end))\(-w(i)^2*F2)); %CB inertia

end

CTA = fe_c(model.DOF,21.01); u0 = CTA*U0;

U1=TR.def*[ones(1,length(w)); U1r]; u1 = CTA*U1;

U2=TR.def*[ones(1,length(w)); U2r]; u2 = CTA*U2;

U3=TR.def*[ones(1,length(w)); U3r]; u3 = CTA*U3;

6.4. STATE-SPACE MODELS AND CRAIG-BAMPTON MODEL REDUCTION 141

% Change output format to be compatible with iicom

C1=d_piezo(’BuildC1’,w’/(2*pi),u0.’,’Tip displ’,’Uimp’); C1.name=’full model’;

C2=d_piezo(’BuildC1’,w’/(2*pi),u1.’,’Tip displ’,’Uimp’); C2.name=’CB K and M’;

C3=d_piezo(’BuildC1’,w’/(2*pi),u2.’,’Tip displ’,’Uimp’); C3.name=’CB K’;

C4=d_piezo(’BuildC1’,w’/(2*pi),u3.’,’Tip displ’,’Uimp’); C4.name=’CB M’;

ci=iiplot;iicom(ci,’curveinit’,{’curve’,C1.name,C1;’curve’,C2.name,C2;’curve’,C3.name,C3;’curve’,C4.name,C4});
iicom(’submagpha’)

d_piezo(’setstyle’,ci);

Figure 6.8 illustrates clearly the fact that the forcing term related to acceleration is the most im-
portant one to represent the response.

Figure 6.8: Transfer function between horizontal displacement at the bottom and the absolute
displacement at the top of the beam

In practice however, the DOFS retained with Craig-Bampton are not limited to the imposed dis-
placements. As an illustrative example, we consider that the translation DOF at the top of the tower
is also kept in the CB reduction. Based on these reduced matrices, a state-space model is built with
fe2ss the response is compared to the full model.

%% Step 2: keep bottom and top translation in the CB basis

142 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

% Mesh and set dofs to be kept

model=d_avc(’meshtower’);

model=fe_case(model,’FixDof’,’Clamped’,[1.06]); % Leave x free for imposed displ

model=fe_case(model,’Remove’,’F-top’); % Remove point force

SET.DOF=[1.01; 21.01]; SET.def=eye(2); % Top and bottom DOF to be kept in CB reduction

model=fe_case(model,’DOFSet’,’UImp’,SET); % To retain in CB matrices input and output

% Build CB matrices

model = stack_set(model,’info’,’EigOpt’,[5 5 0]);

model.DOF = feutil(’getdof’,model);

SE1= fe_reduc(’CraigBampton -SE -matdes 2 1 3 4 ’,model); % Do not use -USEDOF

% DOFS are numbered with -1.001, which is not a supported format for fe_eig, so you need to renumber

SE1.DOF(SE1.DOF<0) = 1000.99+(1:numel(SE1.DOF(SE1.DOF<0))); %

SE1 = rmfield(SE1,{’Node’,’Elt’,’il’,’pl’,’Stack’,’mdof’,’TR’}) ; % To keep only the matrices

% Initialize the reduced model (using super-elements to define matrices)

SE0 = struct(’Node’,[],’Elt’,[]);

model2 = fesuper(’SEAdd 1 -1 -unique -initcoef -newID se1’,SE0,SE1) ;

% Define input/output

model2=fe_case(model2,’SensDOF’,’Output’,21.01);

model2=fe_case(model2,’DOFSet’,’UImp’,[1.01]); % Leave x free for imposed displ

% Build state-space model based on reduced CB matrices

sys=fe2ss(’free 5 5 0 -dterm’,model2); u4=freqresp(sys(1,1),w); u4 = u4(:);

C5=d_piezo(’BuildC1’,w’/(2*pi),u4,’Tip-displ’,’Uimp’); C5.name=’fe2ss CB’;

ci=iiplot;iicom(ci,’curveinit’,{’curve’,C1.name,C1;’curve’,C5.name,C5});

iicom(’submagpha’)

d_piezo(’setstyle’,ci);

Figure 6.9 shows that using fe2ss after a CB reduction leads to a very bad reduced state-space
representation of the dynamics of the beam with imposed displacement.

6.4. STATE-SPACE MODELS AND CRAIG-BAMPTON MODEL REDUCTION 143

Figure 6.9: Transfer function between horizontal displacement at the bottom and the absolute
displacement at the top of the beam

An alternative is to use a transformation of the CB mass and stiffness matrices in order to come
back to a situation where the inertial term in the excitation is zero, and only the stiffness term is
non-zero, so that fe2ss can be applied to build the state-space model. The transformation is applied
so that the retained DOFs are untouched (so that they represent physical DOFs and can be used
to simply apply force and measure output quantities), as proposed in [?]. The transform takes the
form:

{q̃C} = − [MCC]
−1 [MCI] {qI}+ {qc} (6.41)

Therefore the matrices can be transformed with the following projection matrix[
T̃
]
=

[
I 0

− [MCC]
−1 [MCI] I

]
(6.42)

It is straightfowraed to show that after applying the transformation, matrix
[
M̃CI

]
= 0, so that

now only the stiffness term appears in the excitation term. After transforming the matrices, fe2ss
can be used in a straightforward manner to build an accurate reduced state-space model. This is
illustrated below

144 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

%% Step 3 : Apply Raze transform before making the state-space model

% Transform the initial CB matrices

KCB=SE1.K;

N=size(KCB{1},1);
T1=[eye(2) zeros(2,N-2) ; - KCB{1}(3:end,3:end)\KCB{1}(3:end,1:2) eye(N-2)];

Mr=T1’*(KCB{1})*T1;
Kr=T1’*(KCB{2})*T1;

% Replace matrices in the CB model

model3=model2;

model3.Stack{1,3}.K{1}=Mr;
model3.Stack{1,3}.K{2}=Kr;

sys2=fe2ss(’free 5 5 0 -dterm’,model3); u5=freqresp(sys2(1,1),w);

u5 = u5(:);

C6=d_piezo(’BuildC1’,w’/(2*pi),u5,’Tip-displ’,’Uimp’); C6.name=’fe2ss CB+Raze’;

ci=iiplot;iicom(ci,’curveinit’,{’curve’,C1.name,C1;’curve’,C6.name,C6});

iicom(’submagpha’)

d_piezo(’setstyle’,ci);

Figure 6.10 shows that using fe2ss after a CB and the transformation given by (6.42) leads to an
accurate model in the frequency band of interest

6.4. STATE-SPACE MODELS AND CRAIG-BAMPTON MODEL REDUCTION 145

Figure 6.10: Transfer function between horizontal displacement at the bottom and the absolute
displacement at the top of the beam

6.4.2 State-space models with imposed accelerations

The case of imposed acceleration is much simpler to treat as fe2ss can be used directly after CB
reduction in the case of relative displacement. If one is interested in absolute displacement, nor2ss
can be applied after computing the modeshapes based on the reduced CB matrices and having or-
thonormalized them. The first script illustrates the construction of a state-space model for relative
displacement, using fe2ss and the definition of an equivalent load.

% See full example as MATLAB code in d_piezo(’ScriptTutoTowerSSAimpCB’)

d_piezo(’DefineStyles’);

%% Step 1: reference solution

% build model

model=d_avc(’meshtower’);

model=fe_case(model,’FixDof’,’Clamped’,[1.06]); % Leave x free for imposed displ

model=fe_case(model,’Remove’,’F-top’); % Remove point force

model=fe_case(model,’DOFSet’,’UImp’,[1.01]); % Leave x free for imposed displ

146 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

[model,Case] = fe_case(’assemble NoT -matdes 2 1 Case -SE’,model) ;

K0 = feutilb(’tkt’,Case.T,model.K); % Full-model

CB = fe_reduc(’craigbampton 5 5’,model);

TIn= CB.TR.def(:,1);

F = -Case.T’*model.K{1}*TIn;

w=logspace(-2,2,2048);

for i=1:length(w)

U0(:,i)=Case.T*((K0{2}*(1+0.02*1i)-w(i)^2*K0{1})\F);
end

CTA = fe_c(model.DOF,21.01); u0 = CTA*U0;

% Change output format to be compatible with iicom

C0=d_piezo(’BuildC1’,w’/(2*pi),u0.’,’ur-top’,’Aimp’); C1.name=’Full’;

%% Step 2: State-space model using a dofload (relative displ)

% Create super-element type model

model=d_avc(’meshtower’);

model=fe_case(model,’FixDof’,’Clamped’,[1.06]); % Leave x free for imposed displ

model=fe_case(model,’Remove’,’F-top’); % Remove point force

SET.DOF=[1.01; 21.01]; SET.def=eye(2);

model=fe_case(model,’DOFSet’,’UImp’,SET); % To retain in CB matrices input and output

model = stack_set(model,’info’,’EigOpt’,[5 5 0]);

model.DOF = feutil(’getdof’,model);

SE1= fe_reduc(’CraigBampton -SE -matdes 2 1 3 4 ’,model); % Ne pas utiliser -USEDOF

SE1.DOF(SE1.DOF<0) = 1000.99+(1:numel(SE1.DOF(SE1.DOF<0))); % round(SE1.DOF(SE1.DOF<0)+1000)+[0.01:0.01:0.05]’

SE1 = rmfield(SE1,{’Node’,’Elt’,’il’,’pl’,’Stack’,’mdof’,’TR’}) ; % To keep only the matrices

% Initialize the Model

SE0 = struct(’Node’,[],’Elt’,[]);

model2 = fesuper(’SEAdd 1 -1 -unique -initcoef -newID se1’,SE0,SE1) ;

model0=model2; % Save super-element model without any load BC (2 dofs retained)

% Extract matrices and compute static response to imposed displacement at the base

6.4. STATE-SPACE MODELS AND CRAIG-BAMPTON MODEL REDUCTION 147

KCB=model2.Stack{1,3}.K;
TIn= [1; -KCB{2}(2:end,2:end)\KCB{2}(2:end,1)];

% Compute forcing vector

FCB= -KCB{1}*TIn; FCB=FCB(2:end);

% Block 1.01 and define a DofLoad and a new observation matrix instead

model2=fe_case(model2,’FixDOF’,’BC’,1.01); % BC for relative displacement

SET.DOF=model2.Stack{1,3}.DOF(2:end); SET.def= FCB;

model2=fe_case(model2,’DOFLoad’,’AImp’,SET); % Equivalent load

model2=fe_case(model2,’SensDOF’,’Output’,SET.DOF(1));

sys=fe2ss(’free 5 5 0 -dterm’,model2);

w=logspace(-2,2,2048);u1=freqresp(sys(1,1),w);

u1 = u1(:);

C1=d_piezo(’BuildC1’,w’/(2*pi),u1,’ur-top’,’Aimp’); C1.name=’fe2ss 5md+st’;

ci=iiplot;iicom(ci,’curveinit’,{’curve’,C0.name,C0;’curve’,C1.name,C1});
iicom(’submagpha’)

d_piezo(’setstyle’,ci);

Figure 6.11 shows that using fe2ss with applied load leads to an accurate model in the frequency
band of interest

148 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

Figure 6.11: Transfer function between horizontal acceleration at the bottom and the relative dis-
placement at the top of the beam

Absolute displacement response can be computed by using nor2ss

%%Step 3: State-space with absolute displacement

model3=model0; % Initial model without BCs

TR2=fe_eig(model3,[5 7 0]); % Compute modes with CB matrices

SET.DOF=[1.01]; SET.def=eye(1); %

model3=fe_case(model3,’DOFSet’,’UImp’,SET); % Impose acc at bottom

model3=fe_case(model3,’SensDOF’,’Output’,21+.01); % sensor

sys2= nor2ss(TR2,model3) ;

u2=freqresp(sys2(1,1),w); u2=u2(:);

C2=d_piezo(’BuildC1’,w’/(2*pi),u2,’u-top’,’Aimp’); C2.name=’nor2ss’;

% convert reference solution to absolute displacement

u0a=u0-1./w.^2;

C0a=d_piezo(’BuildC1’,w’/(2*pi),u0a.’,’u-top’,’Aimp’); C0a.name=’Full’;

ci=iiplot;iicom(ci,’curveinit’,{’curve’,C0a.name,C0a;’curve’,C2.name,C2});

6.4. STATE-SPACE MODELS AND CRAIG-BAMPTON MODEL REDUCTION 149

iicom(’submagpha’)

d_piezo(’setstyle’,ci);

Figure 6.12 shows that using nor2ss with imposed acceleration leads to an accurate model in the
frequency band of interest

Figure 6.12: Transfer function between horizontal acceleration at the bottom and the absolute
displacement at the top of the beam

6.4.3 State-space models with imposed voltage (piezoelectric actuators)

150 CHAPTER 6. MODEL REDUCTION AND I/O STATE-SPACE MODELS

7

Function reference

Contents

7.1 m piezo 127

7.2 p piezo 129

7.3 d piezo 133

Piezo related functions

d piezo support for demonstration of piezo capabilities
p piezo piezoelectric volume and shell property handling
m piezo piezoelectric material property handling

7.1 m piezo

Purpose
Material function for piezoelectric solids

Syntax

mat= m_piezo(’database name’)

pl = m_piezo(’dbval MatId -elas 12 Name’);

See section ?? for tutorial calls. Accepted commands are

[Database, Dbval] [-unit TY] [,MatiD]] Name

m piezo contains a number of defaults obtained with the database and dbval commands which
respectively return a structure or an element property row. You can select a particular entry of the
database with using a name matching the database entries.
Piezoelectric materials are associated with two material identifiers, the main defines the piezoelectric
properties and contains a reference ElasMatId to an elastic material used for the elastic properties
of the material (see m elastic for input formats).

m_piezo(’info’) % List of materials in data base

% database piezo and elastic properties

pl=m_piezo(’dbval 3 -elas 12 SONOX_P502_iso’)

Theoretical details on piezoelectric materials are given in chapter ??. The m piezo Const and
BuildConstit commands support integration constant building for piezo electric volumes integrated
in the standard volume elements. Element properties are given by p solid entries, while materials
formats are detailed here.

Patch

Supports the specification of a number of patches available on the market. The call uses an option
structure with fields

� .name of the form ProIdval+patchName. For example ProId1+SmartM.MFC-P1.2814.

� MatId value for the initial MatId.

m piezo(’patch’) lists currently implemented geometries. In particular

� Disk.Material.Geometry is used for generic circular patches. (Legacy Noliac.Material.Geometry
is used for circular patches by Noliac). The list of materials in the database is obtained with
m piezo(’info’). Fields for the geometry are

m piezo

– OD outer diameter (mm). This can be replaced by RC.

– TH Thickness (mm). To specify a milimiter fraction replace the . by and . For example
TH0 7 is used for TH=0.7 mm.

– ID inner diameter (mm) (optional for piezo rings).

– LC characteristic length for meshing (when mesher has hability to use the information)

� Rect.Material.Geometry is used for generic rectangular patches. SmartM.Material.Geometry
is used for rectangular patches by Smart Materials. Fields for the geometry are

– WI width (mm)

– LE length (mm)

– TH Thickness (mm). To specify a milimiter fraction replace the . by and . For example
TH0 7 is used for TH=0.7 mm.

– LC characteristic length for meshing (when mesher has hability to use the information)

Thus WI28LE14TH 2 is a 28 by 14 by 0.2 mm patch. The geometry can also be coded as
2814TH 2.

The piezoelectric constants can be declared using the following sub-types

1:Simplified 3D piezoelectric properties

[ProId Type ElasMatId d31 d32 d33 eps1T eps2T eps3T EDType]

These simplified piezoelectric properties (3.5) can be used for PVDF, but also for PZT if shear mode
actuation/sensing is not considered (d24 = d15 = 0). For EDType==0 on assumes d is given. For
EDType==1, e is given. Note that the values of εT (permitivity at zero stress) should be given (and
not εS).

2:General 3D piezo

[ProId Type ElasMatId d 1:18 epsT 1:9]

d 1:18 are the 18 constants of the [d] matrix (see section 2.1), and epsT 1:9 are the 9 constants of
the

[
εT

]
matrix. One reminds that strains are stored in order xx, yy, zz, yz, zx, yx.

3 : General 3D piezo, e matrix

[ProId Type ElasMatId e 1:18 epsT 1:9]

e 1:18 are the 18 constants of the [d] matrix, and epsT 1:9 are the 9 constants of the
[
εT

]
matrix

in the constitutive law (see section 2.1).
See also

p piezo.

154

7.2 p piezo

Purpose
Property function for piezoelectric shells and utilities associated with piezoelectric models.

Syntax

mat= m_piezo(’database name’)

pl = m_piezo(’dbval MatId -elas 12 Name’);

See section ?? for tutorial calls. Accepted commands are

ElectrodeMPC

[model,InputDOF(end+1,1)]=p piezo(’ElectrodeMPC Name’,model,’z==5e-5’); defines the isopo-
tential constraint as a case entry Name associated with FindNode command z==5e-5. An illustration
is given in section ?? .
Accepted command options are

� -Ground defines a fixed voltage constraint FixDof,V=0 on Name.

� -Input"InName" defines an enforced voltage DofSet,InName entry for voltage actuation.

� MatIdi is used to define a resultant sensor to measure the charge associated with the electrode.
Note that the electrode surface must not be inside the volume with MatIdi. If that is the case,
you must arbitrarily decompose your mesh in two parts with different MatId. You can also
generate this sensor a posteriori using ElectrodeSensQ, which attempts to determine the
MatIdi based on the search of a piezoelectric material connected to the MPC.

ElectrodeSensQ

model=p piezo(’ElectrodeSensQ 1682 Q-Base’,model); adds a charge sensor (resultant) called
Q-Base on node 1682. (See (3.10) for theory).
For shells, the node number is used to identify the p piezo shell property and thus the associated
elements. It is reminded that p piezo entries must be duplicated when multiple patches are used.
For volumes, the p piezo ElectrodeMPC should be first defined, so that it can be used to obtain
the electrode surface information.
Note that the command calls fe case(’SensMatch’) so that changes done to material properties
after this call will not be reflected in the observation matrix of this sensor.
To obtain sensor combinations (add charges of multiple sensors as done with specific wiring), specify
a data structure with observation .cta at multiple .DOF as illustrated below.
For a voltage sensor, you can simply use a DOF sensor
model=fe case(model,’SensDof’,’V-Base’,1682.21).

p piezo

model=d_piezo(’meshULBPlate cantilever’); % creates the model

% If you don’t remember the electrode node numbers

r2=p_piezo(’ElectrodeDOF’,model)

% Combined charge

r1=struct(’cta’,[1 1],’DOF’,[r2{1:2,2}]+.21,’name’,’QS2+3’);
model=p_piezo(’ElectrodeSensQ’,model,r1);

sens=fe_case(model,’sens’);

% Combined voltage

r1=struct(’cta’,[1 1],’DOF’,[r2{3:4,2}]+.21,’name’,’VS2+3’);
model=fe_case(model,’SensDof’,r1.name,r1);

sens=fe_case(model,’sens’);sens.lab

ElectrodeDOF

p piezo(’ElectrodeDof Bottom’,model) returns the DOF the bottom electrode. With no name
for selection p piezo(’ElectrodeDof’,model) the command returns the list of electrode DOFs
based on MPC defined using the ElectrodeMPC command or p piezo shell entries. Use ElectrodeDof.*
to get all DOFs.

ElectrodeView ...

p piezo(’electrodeview’,cf) outlines the electrodes in the model and prints a clear text summary
of electrode information. To only get the summary, pass a model model rather than a pointer cf to
a feplot figure.
p piezo(’electrodeviewCharge’,cf) builds a StressCut selection allowing the visualization of
charge density. You should be aware that only resultant charges at nodes are known. For proper
visualization a transformation from charge resultant to charge density is performed, this is known
to have problem in certain cases so you are welcome to report difficulties.

Electrode2Case

Electrode2Case uses electrode information defined in the obsolete Electrode stack entry to gener-
ate appropriate case entries : V In for enforced voltage actuators, V Out for voltage measurements,
Q Out for charge sensors.

ElectrodeInit

ElectrodeInit analyses the model to find electric master DOFs in piezo-electric shell properties or
in MPC associated with volume models.

Tab

156

p piezo

Tab commands are used to generate tabulated information about model contents. The calling format
is p piezo(’TabDD’,model). With no input argument, the current feplot figure is used. Currently
generated tabs are

� TabDD constitutive laws

� TabPro material and element parameters shown as java tables.

View

p piezo(’ViewDD’,model) displays information about piezoelectric constitutive laws in the current
model.
p piezo(’ViewElec ...’,model) is used to visualize the electrical field. An example is given
in section ?? . Command options are DefLenval to specify the arrow length, EltSelval for the
selection of elements to be viewed, Reset to force reinit of selection.
ViewStrain and ViewStress follow the same calling format.

Shell element properties

Piezo shell elements with electrodes are declared by a combination of a mechanical definition as a
layered composite, see p shell 2, and an electrode definition with element property rows of the
form
[ProId Type MecaProId ElNodeId1 LayerId1 UNU1 ElNodeId2...]

� Type typically fe mat(’p piezo’,’SI’,1)

� MecaProId : ProId for mechanical properties of element p shell 2 composite entry. The
MatIdi for piezo layers must be associated with piezo electric material properties.

� ElNodId1 : NodeId for electrode 1. This needs to be a node declared in the model but its
position is not used since only the value of the electric potential (DOF 21) is used. You may
use a node of the shell but this is not necessary.

� LayerId : layer number as declared in the composite entry.

� UNU1 : currently unused property (angle for polarization)

The constitutive law for a piezoelectric shell are detailed in section 3.2 . The following gives a sample
declaration.

model=femesh(’testquad4’); % Shell MatId 100 ProdId 110

% MatId 1 : steel, MatId 12 : PZT elastic prop

157

p piezo

model.pl=m_elastic(’dbval 1 Steel’);

% Sonox_P502 piezo material, sdtweb m_piezo(’Sonox_P502’)

model.pl=m_piezo(model.pl,’dbval 3 -elas 12 SONOX_P502’);

% ProId 111 : 3 layer composite (mechanical properties)

model.il=p_shell(model.il,[’dbval 111 laminate ’ ...

’3 1e-3 0 ’ ... % MatID 3 (PZT), 1 mm piezo, 0

’1 2e-3 0 ’ ... % MatID 1 (Steel), 2 mm

’3 1e-3 0’]); % MatID 3 (PZT), 1 mm piezo, 0

% ProId 110 : 3 layer piezo shell with electrodes on nodes 1682 and 1683

model.il=p_piezo(model.il,’dbval 110 shell 111 1682 1 0 1683 3 0’);

p_piezo(’viewdd’,model) % Details about the constitutive law

p_piezo(’ElectrodeInfo’,model) % Details about the layers

158

7.3 d piezo

Purpose
Support function for piezoelectric demos

Syntax

sdtweb(’_taglist’,’d_piezo’) % display contents

Accepted commands are

Script

These commands group sample scripts. Use d piezo to display tag list and see available contents.

MeshPlate

Meshing utilities for the placement of piezoelectric patches on a supporting structure (flat plate for
now).
The options are specified in a structure with fields

� .list : defines a list of features to be introduced with columns giving name,LamSpec,Geo,
name laminate specification and shape options.

� .unit : gives the model unit (needed since patch dimensions are always given in mm).

The laminate specification string is composed of the following

� BaseIdi gives the ProId of the base laminate which is then used to figure out the position of
patches.

� +Patch or -Patch to place a patch above or below the base laminate.

� Patch itself is a specification of a patch material and geometry. The list of implemented patch
can be obtained using m piezo Patch

� .In to specify that the patch has an enforced voltage.

The geometry/position specification string Geo can be

� a specification of the patch corner and orientation such as xc=.03 yc=.05 ang=30 if the patch
geometry is specified using the laminate specification.

� rect shapes [xc lx nx yc ly ny alpha MatId ProId] where MatId and ProId are filled
automatically if not provided.

d piezo

� circ shapes [xc yc rc lc (MatId ProId)]

� global lx=.4 ly=.3 lc=.02 -Sens. The option -Sens generates a sensor entry correspond-
ing to normal displacement of the initial mesh. Alternatively you can add a sensor configuration
SensDOF entry see sdtweb(’sensor#scell’) or sdtweb(’sensor#sstruct’).

% Start by defining properties of the underlying laminate

mdl=struct(’Node’,[],’Elt’,[], ... % empty model

’pl’, ... % composite layer property

[1 fe_mat(’m_elastic’,’SI’,1) 42.5e9 .042 1490 3.35e9 .01], ...

’il’, ... % laminate definition (6 layers at 0,90,0,90,0,90)

p_shell([’dbval 1 laminate 1 2.167e-4 0 1 2.167e-4 90 ’ ...

’1 2.167e-4 0 1 2.167e-4 90 1 2.167e-4 0 1 2.167e-4 90’]), ...

’unit’,’SI’);

RG=struct;

RG.list={’Name’,’Lam’,’shape’
’Main_plate’, mdl,’global lx=.4 ly=.3 lc=.02’

’Act1’,’BaseId1 +SmartM.MFC-P1.2814 -SmartM.MFC-P1.2814.in’,’xc=.35 yc=.25 ang=30’

’Sen2’,’BaseId1 +SmartM.MFC-P1.2814’,’xc=.03 yc=.05 ang=30’

’Sen3’,’BaseId1 +Noliac.NCE51.OD25TH1’,’xc=.05 yc=.25’

};
cf=feplot;d_piezo(’MeshPlate’,RG);cf.mdl.name=’Plate with piezo’;

p_piezo(’electrodeinfo’,cf.mdl.GetData)

matgui(’jil’,cf);matgui(’jpl’,cf); % Display properties

The following illustrates transient simulation to a load on a specific piezo

model=cf.mdl.GetData; model=p_piezo(’electrode2case’,model);

opt=fe_time(’TimeOpt Newmark .25 .5 0 .3e-6 200’);

opt.AssembleCall=’assemble -fetime Load’;

%opt.FinalCleanupFcn=’out.DOF=model.DOF;

%out.def=[Case.T*out.def+Case.TIn*[0 ft(1:end-1)’’]];’;

model=stack_set(model,’info’,’Rayleigh’,[0 2*.0025/200e3]);

def=fe_time(opt,cf.mdl);def.name=model.name;

cf.def=def; fecom(’colordataevalRadZ-edgealpha0’);fecom(’scc1e-10’);

Mesh

Patch Simple volume patch.

160

d piezo

Plate Generic script for arbitrary placement of patches on a flat plate. A list of shapes can be given
as a cell array. This is considered as a demo since it currently only supports a rectangular base
plate.
GammaS build a weighting for surface control.

161

d piezo

162

Bibliography

[1] J. Yang, An introduction to the theory of piezoelectricity. Springer, 2010.

[2] “IEEE standards on piezoelectricity, ans n° 176-187, IEEE,” 1988.

[3] A. Deraemaeker and H. Nasser, “Numerical evaluation of the equivalent properties of Macro
Fiber Composite (MFC) transducers using periodic homogenization,” International Journal of
Solids and Structures, vol. 47, pp. 3272–3285, 2010.

[4] “Multiple-support seismic analysis of large structures,” Computers and Structures, vol. 36, no. 6,
pp. 1153–1158, 1990.

[5] R. Guyan, “Reduction of mass and stiffness matrices,” AIAA Journal, vol. 3, p. 380, 1965.

[6] R. J. Craig and M. Bampton, “Coupling of substructures for dynamic analyses,” AIAA Journal,
vol. 6, no. 7, pp. 1313–1319, 1968.

[7] G. Raze, C. Dumoulin, and A. Deraemaeker, “Reduced-order state-space models of structures
with imposed displacements and accelerations,” Mechanical Systems and Signal Processing,
vol. 191, p. 110156, 2023.

163

d piezo

164

	Release notes
	Basics of piezoelectricity
	Piezoelectric constitutive laws in 3D
	Piezoelectric constitutive laws in plates
	Database of piezoelectric materials
	Illustration of piezoelectricity in statics: patch example
	Patch in extensional mode
	Patch in shear mode

	Finite element formulations for piezoelectric structures
	Piezoelectric solid finite elements
	Piezoelectric shell finite elements
	Full order model
	Using the Electrode stack entry
	Example 1 : Static response of a piezoelectric patch
	Static response of a patch in extension mode
	Static response of a patch in shear mode

	Example 2: Dynamic response of a piezoelectric disk

	Sensors and Actuators definition
	Input/Output shape matrices
	Collocated force-displacement pairs
	Non-collocated force-displacement pairs and combinations
	Other types of actuators
	Other types of sensors
	Piezoelectric sensors and actuators
	General theory
	Aluminum plate with 4pzt patches (Shell model)
	Piezoelectric shaker with an accelerometer mounted on top (3D model)

	Methods for meshing plates with piezoelectric patches
	Manual meshing
	Automated inclusion of piezo patches
	Using predefined patches

	Model reduction and I/O state-space models
	Model reduction theory
	General framework
	Normal mode models

	State space models
	General theory
	State-space formulations with static correction
	State-space models with static correction: illustration on the tower example

	State-space models with imposed displacement and acceleration
	State-space models with imposed displacement
	State-space models with imposed acceleration
	Model reduction and state-space models for piezoelectric structures

	State-space models and Craig-Bampton model reduction
	State-space models with imposed displacements using CB matrices
	State-space models with imposed accelerations
	State-space models with imposed voltage (piezoelectric actuators)

	Function reference
	 m_piezo
	 p_piezo
	 d_piezo

	Bibliography
	Index

