Contents    Index    PDF 

References

[1]
J. R. Rice and A. L. Ruina, "Stability of Steady Frictional Slipping," Journal of Applied Mechanics, vol. 50, pp. 343-349, June 1983.
[2]
J. Salençon, Viscoélasticité. Presse des Ponts et Chaussés, Paris, 1983.
[3]
I. Doghri, Mechanics of Deformable Solids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
[4]
J. C. Simo and T. J. R. Hughes, Computational Inelasticity. No. 7 in Interdisciplinary Applied Mathematics Mechanics and Materials, New York, NY: Springer, 2 ed., 2000.
[5]
J. C. Simo and R. L. Taylor, "Consistent tangent operators for rate-independent elastoplasticity," Computer methods in applied mechanics and engineering, vol. 48, pp. 101-118, 1985.
[6]
J. Schröder and P. Neff, "Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions," International Journal of Solids and Structures, vol. 40, pp. 401-445, Jan. 2003.
[7]
INRIA and http://www.sdtools.com/pdf/sdt.pdfSDTools, OpenFEM, a Finite Element Toolbox for Matlab and Scilab, http://www.openfem.netwww.openfem.net. INRIA, Rocquencourt, SDTools, Paris, France, 2004.
[8]
M. Abbas, "Loi de comportement hyperélastique : matériau pres[...]," p. 8.
[9]
Structural Dynamics Toolbox (for Use with MATLAB). Paris: SDTools, 1995/2020.
[10]
D. Chapelle, J.-F. Gerbeau, J. Sainte-Marie, and I. E. Vignon-Clementel, "A poroelastic model valid in large strains with applications to perfusion in cardiac modeling," Computational Mechanics, vol. 46, pp. 91-101, June 2010.
[11]
G. Marckmann and E. Verron, "Comparison of hyperelastic models for rubber-like materials," Rubber Chemistry and Technology, vol. 79, no. 5, pp. 835-858, 2006.
[12]
H. Dal, Y. Badienia, K. Açikgöz, F. A. Denlï, Y. Badienia, K. Açikgöz, and F. A. Denlï, "A comparative study on hyperelastic constitutive models on rubber: State of the art after 2006," in Constitutive Models for Rubber XI, June 2019.
[13]
M. M. Carroll, "A Strain Energy Function for Vulcanized Rubbers," Journal of Elasticity, vol. 103, pp. 173-187, Apr. 2011.
[14]
O. Zienkiewicz and R. Taylor, The Finite Element Method. MacGraw-Hill, 1989.
[15]
M. Abbas, "Finite elements treating the quasi-incompressibility," Machine Translation, p. 21.
[16]
R. Zhuravlev, Contributions to the study of the mechanical behavior of railway tracks. Component with non-linear and dissipative behavior. PhD thesis, ENSAM, Dec. 2017.
[17]
R. Penas, E. Balmes, and A. Gaudin, "A unified non-linear system model view of hyperelasticity, viscoelasticity and hysteresis exhibited by rubber," Mechanical Systems and Signal Processing, vol. 170, p. 25, 2022.
[18]
R. Penas, Models of Dissipative Bushings in Multibody Dynamics. PhD thesis, Ecole Nationale Supérieure d'Arts et Métiers Paris, Nov. 2021.
[19]
G. Vermot Des Roches, Frequency and Time Simulation of Squeal Instabilities. Application to the Design of Industrial Automotive Brakes. PhD thesis, Ecole Centrale Paris, CIFRE SDTools, 2011.
[20]
V. Jaumouillé, Dynamique des structures à interfaces non linéaires : Extension des techniques de balance harmonique. PhD thesis, Ecole Centrale de Lyon, Mar. 2011.
[21]
A. Sénéchal, B. Petitjean, and L. Zoghaib, "Development of a numerical tool for industrial structures with local nonlinearities," in Proceedings of ISMA 2014 - International Conference on Noise and Vibration Engineering and USD 2014 - International Conference on Uncertainty in Structural Dynamics, pp. 3111-3126, 2014.
[22]
C. Hammami, Intégration de Modèles de Jonctions Dissipatives Dans La Conception Vibratoire de Structures Amorties. PhD thesis, Arts et Metiers ParisTech, Paris, Oct. 14.
[23]
J. A. Greenwood and J. B. P. Williamson, "Contact of nominally flat surfaces," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 295, no. 1442, pp. pp. 300-319, 1966.
[24]
F. Moirot, Etude de la stabilité d'un équilibre en présence de frottement de Coulomb. PhD thesis, Ecole Polytechnique, 1998.
[25]
X. Lorang, Instabilité vibratoire des structures en contact frottant: Application au crissement des freins de TGV. PhD thesis, Ecole Polytechnique, 2007.
[26]
D. Vola, M. Raous, and J. A. C. Martins, "Friction and instability of steady sliding: squeal of a rubber/glass contact," Int. J. Numer. Meth. Engng., vol. 46, pp. 1699-1720, 1999.
[27]
T. Baumberger and C. Caroli, "Solid friction from stick-slip to pinning and aging," Advances in Physics, vol. 55, pp. 279-348, May 2006.
[28]
S. Biwa, S. Hiraiwa, and E. Matsumoto, "Stiffness evaluation of contacting surfaces by bulk and interface waves," Ultrasonics, vol. 47, no. 1 4, pp. 123 - 129, 2007.
[29]
G. Vermot Des Roches, Frequency and time simulation of squeal instabilities. Application to the design of industrial automotive brakes. PhD thesis, Ecole Centrale Paris, CIFRE SDTools, 2010.