Contents    Index    PDF 

References

[1]
C. Desceliers, Dynamique non linéaire en déplacements finis des structures tridimensionnelles viscoélastiques en rotation. PhD thesis, École Centrale de Paris, 2001.
[2]
M. Géradin and D. Rixen, Mechanical Vibrations. Theory and Application to Structural Dynamics. John Wiley & Wiley and Sons, 1994, also in French, Masson, Paris, 1993.
[3]
J. Batoz and G. Dhatt, Modélisation des Structures par Éléments Finis. Hermès, Paris, 1990.
[4]
J.-P. Laîné, Dynamique des rotors. Cours de l'École Centrale de Lyon, 2005.
[5]
A. Sternchüss, Multi-level parametric reduced models of rotating bladed disk assemblies. PhD thesis, Ecole Centrale de Paris, 2009.
[6]
M. Lalanne and G. Ferraris, Rotordynamics prediction in Engineering. Wiley, 1998.
[7]
G. Lallement, C. Berriet R., and S., “Updating finite element models using static deformations,” International Modal Analysis Conference, pp. 494–499, 1992.
[8]
R. G. and V. C., “Calcul modal par sous-structuration classique et cyclique,” Code_Aster, Version 5.0, R4.06.02-B, pp. 1–34, 1998.
[9]
Sternchüss, A. and Balmes, E. and Jean, P. and Lombard, JP., “Reduction of Multistage disk models : application to an industrial rotor,” in 012502, 2008. Paper Number GT2008-012502.
[10]
E. Balmes, “Orthogonal maximum sequence sensor placements algorithms
for modal tests, expansion and visibility.,” IMAC, January 2005.
[11]
A. Sternchüss and E. Balmes, “On the reduction of quasi-cyclic disks with variable rotation speeds,” in Proceedings of the International Conference on Advanced Acoustics and Vibration Engineering (ISMA), pp. 3925–3939, 2006.
[12]
G. Vermot Des Roches, Frequency and time simulation of squeal instabilities. Application to the design of industrial automotive brakes. PhD thesis, Ecole Centrale Paris, CIFRE SDTools, 2010.