
AIAA 2002-1391

Iterative techniques for eigenvalue solutions of
damped structures coupled with fluids

Adrien Bobillot and Étienne Balmès ∗
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When computing the dynamic response of a structure, eigenvalue computations play
a central role. For structures with internal compressible fluids, a pressure formulation
leads to non symmetric real matrices so that one typically uses complex eigenvalue solvers.
Moreover, if one considers structures containing damped materials, the matrices become
complex.

The present paper discusses a class of partial eigenvalue solvers that are applicable
to these problems. The main characteristics of the proposed techniques are the use of
iterations on real subspaces, basis enrichment using residues computed at a particular
step, and the separate factorization of the real part of the structure and fluid stiffness
matrices. These ingredients are key to the significant speedup obtained over a standard
complex eigenvalue solver. The paper discusses energy norms which are used to evaluate
convergence by estimating the size of residues, and how these residues are used to enrich
the basis for the next iteration. The effectiveness of using standard modal approximations
of the exact solutions to start the iterations is finally discussed.

Evaluations in terms of speed and accuracy are shown for a 57,000 DOFs model of a
PSA Peugeot Citroën oil pan, with a constrained viscoelastic layer, and for a model of the
main cryogenic stage of Ariane 5 consisting of 88,000 DOFs. Computations are performed
using the Structural Dynamics Toolbox for MATLAB taking the MSC/NASTRAN com-
plex eigenvalue solver as reference for comparisons.

Introduction
Eigenvalue solutions are critical for the analysis of

the resonant properties of structures and for modal
approximations of transient dynamics.
Real eigenvalue solvers for elasticity problems have

received considerable attention and the associated the-
ory is well described in textbooks1, 2 .
Problems with viscous and hysteretic damping

and problems with fluid structure coupling lead to
quadratic eigenvalue problems

(
Mλ2 +Dλ+K + iB

) {φ} = {0} (1)

which are typically solved by canonical transformation
to first order form3, 4 .
It is rightfully shown in Ref.4 that paying attention

to the block structure of the first order form of the
quadratic eigenvalue problem can lead to significant
speedup. This paper pushes the idea further and in-
troduces Ritz basis solvers with residue iteration that
are applicable to eigenvalue problems with multiple
fields.
The case of a viscoelastically damped structure cou-

pled with a compressible fluid is considered here to
show the general applicability of the proposed eigen-
value solvers. The problem is described using displace-
ment, velocity and viscoelastic relaxation fields for the

∗Professor, Department of Mechanical Engineering
Copyright c© 2002 The American Institute of Aeronautics and

Astronautics, Inc. All rights reserved.

structure and pressure and pressure rate for the fluid.
While one still has a first order eigenvalue problem, the
proposed eigensolvers make use of the specific block
structure and are thus significantly more efficient than
standard solvers.
The first section summarizes the models used to

describe viscoelastic damping and elasto-acoustic cou-
pling. The second part of the paper analyses classical
and new eigenvalue solvers. The last section analyzes
performance and convergence for the cases of an oil
pan made of a viscoelastic sandwich shell and a model
of the Ariane 5 main cryogenic stage.

Damping and Fluid Models
To illustrate the proposed eigenvalue solution strat-

egy, one will consider models of damped structures,
fluid-structure interaction and damped structures cou-
pled with fluid. The associated models are described
in this section.

Viscoelastic damping

The basic assumption of linear viscoelasticity5 is the
existence of a relaxation function h(t) such that the
stress is obtained as a convolution with the strain his-
tory

σ(t) =
∫ +∞

0

ε(t− τ)h(τ, T, σ0)dτ. (2)

Using the Laplace transform, one obtains an equiv-
alent representation where the material is now charac-
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terized by the Complex Modulus E (transform of the
relaxation function)

σ(s) = E(s, T, σ0)ε(s) = (E′ + iE′′)ε(s). (3)

For all practical purposes, one can thus, in the fre-
quency domain, deal with viscoleasticity as a special
case of elasticity where the material properties are
complex and depend on frequency, temperature, pre-
stress and possibly other environmental factors.
In practice, the complex modulus is determined ex-

perimentally using dynamic excitation. For a given set
of material test results, analysis requires knowledge of
E(s) for arbitrary values of s or at least of the fre-
quency on the Fourier axis (s = iω). Three approaches
are typically used :

• E(iω) is interpolated from tabulated material test
data.

• E(s) is represented by a rational fraction

E(s) = E0
1 + α1s+ ...+ αnnsnn

1 + β1s+ ...+ βndsnd
. (4)

Some particular reduced forms of a rational frac-
tion may be used in practice.

• E(s) is represented using another analytical rep-
resentation, in particular fractional derivatives6 .

When proper care is taken, all three approaches are
capable of closely approximating material test data.
They thus have the same “physical” validity. The
differences are really seen in how each representation
can be integrated in FEM solvers and in the validity
of extrapolations outside the tested material behavior
range. On the later point, the actual process used to
obtain the parameters has a strong influence, it may
thus be easier to obtain a good model with a partic-
ular representation even if that representation is not
inherently better.
Dependence on environmental factors (temperature,

pre-stress, ...) should a priori be arbitrary. In prac-
tice however, one generally assumes that environmen-
tal factors only act as shifts on a reduced frequency7 .
Tests thus seek to characterize a master curve Em(s)
and a shift function α(T, σ0) describing the modulus
as

E(s, T, σ0) = Em(α(T, σ0)s). (5)

Since the strain energy is a linear function of the
constitutive law parameters Ei(s, T, σ0), one can build
a representation of the dynamic stiffness as a linear
combination of constant matrices

[Z(Ei, s)]=
[
Ms2 +Ke +

∑
i Ei(s, T, σ0)

Kvi(E0)
E0

]
. (6)

This representation is the basis used to develop prac-
tical direct frequency response solvers for viscoelastic
vibration problems8 .
Of particular interest for eigenvalue solutions are the

cases where Ei have a rational fraction expression. An
arbitrary rational fraction (4) that is proper and has
distinct poles, can be represented as a sum of first
order rational fractions

E(s) = E∞ −

 n∑

j=1

Ej

s+ ωj


 . (7)

Using a method similar to the canonical transforma-
tion described by Komzsik4 for converting quadratic
problems to linear problems, (6) is transformed into a
higher order linear problem by introducing an inter-
nal viscoelastic relaxation field qvj = − Ej

(s+ωj)
q. For a

single qvj , (6) thus takes the form




 M 0 0
0 M 0
0 0 M


s+


 0 −M 0
Ke+E∞Kv 0 Kv

EjM 0 ωjM








q
sq
qv


=



0
F
0


.

(8)

A particular case is produced when the complex mod-
ulus is considered to be a constant, i.e. E(s) =
E0(1 + ηj), which corresponds to hysteretic damping.
If loss factors are introduced in both the elastic (ηe)
and the damping core (ηv), the first order problem to
be solved is simply

Ms2q + ((1 + ηej)Ke + (1 + ηvj)Kv)q = F. (9)

Fluid structure coupling

The type of coupling which is considered in this pa-
per is based on elasto-acoustic, which applies to struc-
tures containing a compressible non-weighting fluid
with or without free surface, as described in figure 1.
The finite element formulation for this type of problem
can be written as in Ref.9

[[
K −C
0 F

]
+s2

[
M 0
CT Kp

]]{
q
p

}

= [Zstr−fl]
{

q
p

}
=

{
F
0

}
,

(10)

with q the displacements of the structure, p the pres-
sure variations in the fluid and F the external load
applied to the structure, where

∫
ΩS

σij(u)εij(δu)dx ⇒ δqTKq∫
ΩS

ρSu.δudx ⇒ δqTMq
1

ρF

∫
ΩF

∇p∇δpdx ⇒ δpTFp
1

ρF c2

∫
ΩF

pδpdx ⇒ δpTKpp∫
Σ
pδu.ndx ⇒ δqTCp

(11)

2
American Institute of Aeronautics and Astronautics



AIAA 2002-1391

ΩF

ΩS

n

F
ext

Fig. 1 Fluid-structure interaction scheme

In the implementation used for applications, the cou-
pling term C is computed using fluid/structure cou-
pling elements with one integration point at the center
of gravity of each element. When structural and fluid
meshes do not match at boundaries, pairing of ele-
ments needs to be done. For each fluid element Fi, one
takes the center of gravity Gf,i (figure 2), and searches
the solid element Si which is facing the center of grav-
ity, in the direction of the normal to the fluid element
Fi. The projection of Gf,i on the solid element, Pi,
belongs to Si, and one computes the reference coordi-
nate r and s of Pi in Si (if Si is a quad4, −1 < r < 1
and −1 < s < 1). Thus one knows the weights that
have to be associated to each node of Si. The coupling
term will thus associate the DOFs of Fi to the DOFs
of Si, with the corresponding weights.

Gf,1 Gf,2

Fluid

Solid

P1
P2

Fig. 2 Non-matching meshes

Damped structures coupled with fluids

One now considers a structure with viscoelastic
damping coupled with a fluid. The equation to be
solved can be obtained by substituting the stiffness
matrix in (10) by the expression developed in (8), cor-
responding to a viscoelastic behavior. The resulting
equation thus couples the five fields : displacement q,
velocity sq, viscoelastic relaxation qv, pressure fluctu-

ation p and pressure fluctuation rate sp as follows





M 0 0 0 0
0M 0 0 0
0 0 M 0 0
0 0 0Kp 0
0CT 0 0 Kp


s+

+




0 −M 0 0 0
Ke+E∞Kv 0 Kv−C 0

αM 0 ωjM 0 0
0 0 0 0−Kp

0 0 0 F 0










q
sq
qv

p
sp



=




0
Fe

0
0
0




(12)

The eigenvalue problem of interest is thus non-
symmetric and high order with 2 times the number of
structural DOFs, 2 times the number of fluid DOFs
and one or more times that number of viscoelastic
relaxation DOFs (accurate representation of many vis-
coelastic materials requires 5 to 10 terms in (7) and
thus as many relaxation fields).
Thus although (12) is associated with a first or-

der eigenvalue problem, standard solvers will perform
poorly because it is associated with a larger number of
DOFs. This limitation motivates the work presented
here.

Eigenvalue problems
Overview of classical methods

All the problems detailed in the previous sections
can be written as generalized eigenvalue problems with
constant matrices of the form

[A]{θj} = [B]{θj}λj , (13)

Solvers for these problems are either complete
solvers which compute all the eigensolutions and are
applicable only for small matrices, or partial solvers
which seek the eigensolutions in a particular frequency
zone (typically low frequency poles near the imaginary
axis).
Our focus is on large order problems, so that com-

plete solvers are not applicable. We will thus detail
in this section different types of partial solvers. The
inverse iteration method shows the fundamental recur-
rence that allows partial mode estimation. Standard
generalizations are the subspace and Lanczos meth-
ods1–4 , and we introduce the new concept of Ritz
methods with residue iterations. The main compu-
tational costs of these methods are associated with
identical tools: factorization, forward-backward substi-
tution, projection, complete resolution on the reduced
problem. Their differences are thus mainly related to
their respective convergence rate.

Inverse iteration method

The fundamental principle of this method is to solve
the inverse problem of (13)

[A]−1[B]{xj} = 1
λj

{xj}, (14)
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by building a recurrence of the form
{
x(n)

}
= [A]−1[B]

{
x(n−1)

}
. (15)

The ratio of the non-zero components of
{
x(n)

}
{
x(n−1)

} con-
verge to the inverse of the smallest eigenvalue of (13)
1
λ1
, c.f.1 and

{
x(n)

}
converge to the corresponding

eigenvector θ1. The following eigenvalues are then
obtained by a process of orthogonal deflation with
respect to the eigenvectors already computed. This
method is far less efficient than the methods described
below, and must be used only to determine very few
eigenvalues in case of numerical problems associated
to the other methods.
Generalizations of the inverse iteration seek several

eigenvectors at once. They are based on the assump-
tion that an accurate approximation of the solution
of (13) can be found in the subspace spanned by the
columns of a rectangular reduction basis T (with N
rows and NR << N columns). The approximate
eigenvalues of (13) in the subspace spanned by T are
given by {φj}approx = T {φj}R with {φj}R the solu-
tion of the reduced eigenvalue problem (solved by a
complete solver)

[T ]T [A− λj,RB][T ]{θj}R = {0}. (16)

The accuracy of the approximate solution thus only
depends on the subspace spanned by T .

Subspace method

The subspace method builds a sequence of bases
T (0), ...T (n) which span the subspaces E0, ...En. The
recurrence form at step k is a simple generalization of
the inverse iteration method

T (k+1) = [A]−1[B]T (k), (17)

These subspaces are intended to converge to the sub-
space E∞ containing the p first eigenvectors of (13).
The vectors of each subspace Ek must be orthogonal-
ized to avoid Ek to collapse to a vector corresponding
to the first eigenvector. One can note that, unlike in
the Lanczos method, the size of Ek does not increase
during the iterations. Typically, one sets subspace size
to min(p+ 12, 2p).
The iterations are stopped by computing the modes

in the Ek and checking the size of an appropriate dy-
namic residual. The dynamic residual is however not
used directly.

Lanczos method

The principle of the Lanczos method1, 3, 4 is to build
a subspace by successive inverse iterations on a unique
vector z0. From this vector, one builds the Krylov
sequence

T =
[
z0, (A−1B)z0, (A−1B)2z0, ...

]
, (18)

using a recursive orthogonalization scheme to keep the
different vectors orthogonal (this scheme corresponds
to a conjugate gradient search). This subspace con-
verges rapidly to a subspace containing the first eigen-
vectors of (13), which are computed using a complete
solver on the reduced system.
Problems arise when z0 does not excite certain

modes, which happens in particular for cases with mul-
tiple modes. Only numerical oscillations, or the use
of several vectors as starting points, will make these
modes appear in the subspace. For real eigenvectors,
the Sturm sequences technique1 allows to check if one
did not miss an eigenvalue, but for complex modes,
such a technique does not exist.
In the next section, the starting point is a basis con-

taining at least the reference real modes, which makes
the risk of missing an eigenvalue minimal.

Ritz method with residue iterations

To introduce the new Ritz method with residue it-
eration, one first considers the one field eigenvalue
problem [

K − ω2jM
]{φj} = {0}. (19)

Starting from a basis T (0), whose selection will be
discussed later, the following steps are performed at
iteration k

1. Projection of (19) on T (k) and com-
plete resolution (for example by a QR
method) of the reduced eigenvalue problem
T (k)

T [
K − ω2j,RM

]
T (k){φj,R} = 0,

2. Computation of the load residuals associated to
the basis T (k){

R
(k)
j,L

}
=

[
K − ω2j,RM

]
T (k){φj,R} �= 0 (20)

using the fact that T (k)φj,R does not exactly sat-
isfy (13).

3. Computation of the displacement residuals

{
R
(k)
j,D

}
=

[
K̂

]−1{
R
(k)
j,L

}
(21)

where
[
K̂

]
is a mass shifted stiffness matrix (K̂ =

K + αM) when rigid body modes pose prob-
lems. The static flexible response would be an-
other alternative (see1 on iterations in presence
of rigid body modes). In practice, when load
residuals are complex (complex solution), they
are separated into a real and a complex part.
The displacement residuals are then obtained by

R
(k)
j,D =

[
K̂

]−1[
�
{
R
(k)
j,L

}
	
{
R
(k)
j,L

}]
.

4. Evaluation of the relative strain energy error in-
dicator (of course a kinetic energy criterion could
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alternatively be defined, or a mix of both)

ε
(k)
j =

‖
{
R
(k)
j,D

}
‖2

K

‖T (k){φj,R}‖2K
=

‖
{
R
(k)
j,D

}
‖2

K

ω2j,R

(the modeshapes are normalized with respect to
the mass and stiffness matrices).
For complex cases, a singular value
decomposition is performed on[
�
{
R
(k)
j,L

}
	
{
R
(k)
j,L

}]T

K
[
�
{
R
(k)
j,L

}
	
{
R
(k)
j,L

}]
(which is a 2 by 2 matrix), thus extracting
the direction generating the highest resid-
ual energy. This direction is defined by
two scalars a and b which give the vector{
R
(k)
j,D

}
= a�

{
R
(k)
j,L

}
+ b	

{
R
(k)
j,L

}
associated

to the highest error. For complex problems
this vector is used in step [5], thus leading to
iterations on real subspaces.

5. Basis completion:
ε(k)j > Tol ⇒ T (k+1) =

[
T (k),

{
R
(k)
j,D

}]
.

These steps are repeated until every εj is less than
a user-fixed tolerance. In practice, the residues that
complete the basis T (k) need to be orthogonalized with
respect to T (k) to avoid numerical conditioning prob-
lems linked to strong vector collinearity.
Since the method is iterative, the number of steps

needed is dependent on the initial basis T (0). For
real eigenvalue computations, the best candidate is
the result of a short Lanczos run which gives good
eigenvectors estimates but not always the desired ac-
curacy. For complex computations of structures with
hysteretic damping (9), a minimal starting basis in-
cludes the normal modes corresponding to η = 0.
This method can be viewed as a compromise be-

tween the Lanczos and the subspace method. Indeed,
the size of the subspace spanned by T (k) increases at
each iteration step as in the Lanczos method, but the
recurrence proceeds similarly to the subspace method.
Indeed, one can note that the displacement residuals
that are used to complete T (k) lay in the subspace

spanned by
[[
K̂

]−1[
K − ω2j,RM

]
T (k)

]
, which is simi-

lar to (17).

Ritz method with residue iterations - Application
to multiple field problems

The objective of this section is to generalize the
residue iteration strategy to problems with multiple
fields (8), (10) or (12).
Considering viscoelastic structure coupled with a

fluid (12), one seeks to approximate the five fields q,
sq, qv, p and sp. The first three fields are related to the
displacement in the structure q, and the last two fields
are related to the pressure fluctuation p. One thus
considers two subspaces for the iterations: one related

to displacement (spanned by Tq) and the other related
to pressure (spanned by Tp).
Starting from basis

T (0) =




T
(0)
q 0 0 0 0
0 T

(0)
q 0 0 0

0 0 T
(0)
q 0 0

0 0 0 T
(0)
p 0

0 0 0 0 T
(0)
p



, (22)

the following steps are performed at iteration k

1. Projection of (12) on T (k) and complete resolu-
tion (for example by a QR method) of the re-
duced eigenvalue problem. the approximate fields
T
(k)
q qR, T

(k)
q sqR, T

(k)
q qv,R, T

(k)
p pR and T

(k)
p spR

are thus obtained.

2. Computation of the load residuals for pressure

{
R(k)p,j,L

}
= CT s2T

(k)
q qj,R+

Kps
2T
(k)
p pj,R + FT

(k)
p pj,R

(23)

and displacement

{
R(k)q,j,L

}
=Ms2T

(k)
q qj,R+

[Ke + E∞Kv]T
(k)
q qj,R+

KvT
(k)
q qv,j,R − CT

(k)
p pj,R

(24)

which characterize the fact that the approximate
solution does not verify exactly the block equa-
tions (rows 2 and 5) of the eigenvalue problem
associated with (12). The other block rows are
not considered because they are exactly verified.

3. Computation of the displacement residuals for q{
R
(k)
q,j,D

}
= [K0]

−1{
R
(k)
q,j,L

}
, where [K0] =

[Ke +Kv + αM ] is the mass shifted stiffness ma-
trix of the structure (in case of rigid body modes),
and for p{
R
(k)
p,j,D

}
=

[
K̂p

]−1{
R
(k)
p,j,L

}
, where

[
K̂p

]
is a

mass shifted stiffness matrix for the fluid (in case
of rigid body modes).

3. Evaluation of the relative strain energy error in-
dicators

εkq,j =
‖
{
Rk

q,j,D

}
‖2

K0

‖T k
q {qj,R}‖2

K0

,

εkp,j =
‖
{
Rk

p,j,D

}
‖2

Kp

‖T k
p {pj,R}‖2

Kp

4. Bases completion:
ε(k)q,j > Tol ⇒ T

(k+1)
q =

[
T
(k)
q ,

{
R(k)q,j,D

}]
,

ε(k)p,j > Tol ⇒ T
(k+1)
p =

[
T
(k)
p ,

{
R(k)p,j,D

}]
.

As in the previous section, these steps are repeated
until every εj is less than a user-fixed tolerance and
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the residues are orthogonalized with respect to T (k) to
avoid numerical conditioning problems linked to strong
vector collinearity. For complex vectors, one uses a
singular value decomposition to retain a real subspace
as done in the single field problem.
For the starting basis, one uses a typical approxima-

tion for coupled problems combining real eigenvectors
of the uncoupled structure and fluid problems.
The first advantage of the proposed approach is that

one only needs to factor K0 (which has the size of
the structure problem) and K̂p (which has the size of
the fluid problem). The ability to use approximation
(uncoupled solutions) also leads to fast convergence
when coupling is weak.

Applications
Sample models and test configurations

The proposed methods were tested on two models.
The first model, a PSA Peugeot Citroën oil pan

shown in figure 6, has in the nominal case 5561 ele-
ments with 8507 nodes (33003 DOFs). When a sand-
wich layer is added (used for viscoelastic and hysteretic
studies), the model has 14227 elements and 12931
nodes (57457 DOFs). The nominal mesh is gener-
ated with I-DEAS and the additional elements needed
to model the sandwich design are generated using the
MATLAB based Structural Dynamics Toolbox10 . The
fluid model contains 7666 elements for 1470 DOFs (re-
lated to pressure fluctuation).
The second model, provided by EADS Launcher Ve-

hicles, represents a part of the main cryogenic stage of
the Ariane 5 launcher, including two tanks as shown in
figure 8. It has 5832 structural elements (33708 DOFs)
and 56112 fluid elements (54341 DOFs).
Comparisons made in the following sections were

performed running NASTRAN7 version 70.7 and an
implementation of the proposed methods using SDT
4.110 . NASTRAN element matrices were imported
into the SDT to allow direct comparison of results.
The only difference is in the fluid/structure coupling
formulation which is not exported by NASTRAN.
CPU times are given for runs on an SGI R10000

processor. Although the computations were performed
on a 128 processor Origin 2000, a single processor was
used. The only parrallel aspect was thus the shared
memory and I/O.

Damped structures

Computational times
Table 1 shows a breakdown of CPU times for various

analyses of the sandwich design of the oil pan.
Basic steps are first compared : factorization of the

real stiffness, forward/backward substitution, and no-
mal (real) mode computations. Both codes use similar
multifrontal sparse factorization routines and the dif-
ferences in factorization time can in part be attributed
to different settings in the approach used to create

the elimination trees. The SDT spends more time
optimizing the factorization which results in faster
forward/backward substitution. The resulting com-
putational times for normal mode solution are very
similar.

Table 1 CPU times in seconds of some key steps.
Resolution of (8) and (9) (Oil pan, 57159 DOFs,
N.A. : not applicable)

NASTRAN SDT
Model assembly 41 N.A.
Factorization of K 50 90
Forward/back. 5.2 2.7
substitution
20 normal modes 273 252
20 cpx. modes 1420-1447 286-332
Hysteretic (Total) Tol = 10−5

20 cpx. modes N.A. 333-1737
viscoelastic (Total) Tol = 10−5

For solving the complex eigenvalue problem with a
constant loss factor (hysteretic damping), NASTRAN
uses a complex Lanczos algorithm, while the Ritz
method with residue iterations is used by the SDT
(with Tol = 10−5 and T 0 = [φ1..20] in the present
case). For NASTRAN, computational times for com-
plex modes include the factorization of a complex
matrix and resolution time. For SDT, they include
factorization of a real matrix, normal modes compu-
tation and the iterative complex mode refinement.
For loss factors ranging from ηsteel = 1% to 5% and

ηvisco = 5 to 30% for the steel and the damping core
respectively, the speedup is significant (from 4.3 to 5).
One can note that the proposed solver is sensitive to
the damping level which is an expected result since
for low damping the real modes used as T (0) are fairly
accurate approximations of the complex ones (the time
needed to create T (0) is included in the complex mode
solution time).
The extension to a viscoelastically damped model

affects the cost, but the resolution time remains rea-
sonable and well below the Lanczos solver of NAS-
TRAN. The range of times shown in this case cor-
responds to different temperatures (detailed in the
physical study) with convergence being slower in cases
with higher damping.

Physical study

The computations concerning viscoelastic damping
are performed using a 3 parameter model for the
Young modulus of the viscoelastic core

E(s, T ) = Emax
αT s+ ωmin

αT s+ Emaxωmin
Emin

, (25)
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where

log10(αT ) = −c1 T − Tref

T − (Tref − c2)
, (26)

and Emax = 10GPa, Emin = 8GPa, ωmin = 300Hz,
c1 = 2, Tref = 70oC, c2 = 100oC. Figure 3 illustrates
for a temperature of 30oC, the evolution of E(s) with
the frequency, in magnitude and phase. As expected,
this plot shows a optimal value of the loss factor at the
maximum slope of the storage modulus.
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Fig. 3 Evolution of E(s, T ) with the frequency at
T = 30oC. Top: Amplitude, Bottom: Phase angle.
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Fig. 4 Top: Evolution of ξ with the temperature
for flexible modes 7 to 20,Bottom: Maximum loss
temperature for flexible modes 7 to 20.

The top part of figure 4 shows the evolution of
pole locations for temperatures ranging from T =
10 to 120oC. This tracking of poles allows to study
the evolution of the temperature inducing maximum
loss in the structure for each mode. The bottom part of
figure 4 shows that this optimum differs from the tem-
perature at which the material dissipates most (corre-
sponding to the maximum of �E(s,T )

�E(s,T ) ). This shows the
importance of structural effects in damping design.

Figure 5 presents an example of convergence of
the iterative method for hysteretic damping intro-
duced in the steel (ηsteel = 1%) and the visco layer
(ηvisco = 1000%). An excessive loss factor has been
introduced in the viscoelastic core in order to illustrate
convergence needs. One can see that a basis contain-
ing the normal (real) modes φ1..20 overestimates the
modal dampings ξj . Adding the static response to the
viscoelastic loads (K̂−1Kvφ7..20 for flexible modes) im-
proves the results but still overestimates modal damp-
ings. The Ritz method with residue iterations starting
from T0 =

[
φ1..20, K̂

−1Kvφ7..20

]
gives an estimate of

both the modal damping ratios and the frequencies at
.01% relative error after only 3 iterations.
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Fig. 5 Convergence of the complex poles for
ηsteel = 0.01 and ηvisco = 10 (excessive value to il-
lustrate convergence needs)

Fluid-Structure Coupling

Evaluations of the proposed method were performed
on the oil pan and Ariane 5 model.
Figures 6 illustrates the pressure fluctuations at

fluid nodes and the standard nodal displacement of
structure nodes. Correlation between results from

Fig. 6 First flexible mode of the oil pan model
with fluid. Left: Pressure fluctuations in the fluid,
Right: Displacement of the structure.

NASTRAN and the SDT is shown in figure 7, which
represents the mass weighted MAC on both the dis-
placements q and the pressure p and the relative errors
on frequencies for flexible modes 7 to 20. It indicates

7
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Fig. 7 MACm and relative error on frequency be-
tween SDT ans NASTRAN.

an excellent correlation of the modes, with all MACs
greater than .98 and almost zero frequency errors, ex-
cept for mode 17 for which SDT gives a frequency 1.5%
greater than NASTRAN. This marginal difference is
attributed to the different strategy used in building
the fluid/structure coupling matrices.
Table 2 summarizes the respective CPU times for

NASTRAN and the SDT. The complex Lanczos algo-
rithm used by NASTRAN requires the factorization of
the global matrix (c.f. (10)), whereas the Ritz method
with residue iterations factorizes the real structure and
fluid stiffnesses separately, which is far less costly. For
this application, the speedup obtained by the Ritz
method is greater than 2 even though the SDT solver
for normal modes is somewhat less efficient than that
of NASTRAN.

Table 2 CPU times in seconds of some key steps.
Resolution of (10) (Oil pan, 31745 structure DOFs,
1470 fluid DOFs, N.A. : not applicable)

NASTRAN SDT
Factorization of K 129 fluid: 2

structure: 11
20 fluid modes N.A. 8
20 structure modes N.A. 90
20 coupled modes 300 143
(Total) Tol = 10−5

The second application was performed on the Ariane
5 main cryogenic stage model. Figure 8 represents the
structure displacements and pressure in the fluid, while
table 3 summarizes CPU times for some key steps.
Computations were not performed with NASTRAN
because the job exceeded available system capacity.

Fluid and damped structure case

The final application is the resolution of (12) for the
sandwich design of the oil pan with oil. The modulus
used for the sandwich core is

E(s) = 10GPa
(
1− a

s+ w

)
(27)

with w = 1.133 104rad/s and a = w/5.
Table 4 summarizes only the SDT computational

times because NASTRAN does not solve this type of

Fig. 8 First mode of the Ariane 5 main cryo-
genic stage model (without damping) with fluid.
Left: Pressure fluctuations in the fluid, Right: Dis-
placement of the structure.

Table 3 SDT CPU times in seconds of some key
steps. Resolution of (10) (Ariane 5, 33708 struc-
ture DOFs, 54341 fluid DOFs)

Factorization of K fluid: 88.6
structure: 17.7

20 fluid modes 217.6
20 structure modes 100.7
20 coupled modes (Total) 597

Tol = 10−5

problems. In the present case the system to solve con-
cerns non-symmetric matrices of size 174417 and the
resolution is performed within less than 19 min.

Table 4 SDT CPU times in seconds. Resolution
of (12) (Oil Pan, 57159 structure DOFs, 1470 fluid
DOFs, Tol = 10−4,)

Factorization of K fluid: 2
structure: 90

20 fluid modes 8
20 structure modes 342
20 coupled modes (Total) 1128

Tol = 10−4

Figure 9 shows the evolution of the reduction bases
size, as well as the relative strain energy errors for
both the displacement and the pressure fields (c.f. sec-
tion “Ritz method with residue iterations - Application
to multiple field problems”). Starting from the bases
T
(0)
q = [φstr,1..20] and T

(0)
p = [φfl,1..20] containing the

uncoupled structure and fluid modes, one can see that
both errors drop below the tolerance defined (10−4)
while the bases size increase gradually. At starting
point, the error on the pressure field is above 100%,
which shows how the uncoupled modes basis gives poor
estimates of the solution.

Conclusion
This paper introduced a Ritz method with residue

iterations which allows the computation of damped
structures (viscoelastic and hysteretic damping) cou-
pled with fluid. The notions of model reduction (Ritz

8
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Fig. 9 Convergence for the displacement q and the
pressure p for the Ritz method with residue iterations
with Tol = 10−4 and viscoelastic damping.

analysis) and residue iterations, on which the method
is based, are quite general and allow the creation of
iterative solvers for many problems arising in modal
analysis (computing Minimum Dynamic Residual Ex-
pansion11 , modal sensitivities12 , FRFs13 and FRF
sensitivities, ...).
The paper illustrates different applications of the

method, and shows its efficiency. Indeed, for com-
plex eigenvalue solvers, the proposed method only
needs to use factorizations of real stiffness matrices.
Concerning the fluid/structure coupling case, the sep-
arate factorization of the structure and fluid matrices
also provides significant speedup. Finally, for the vis-
coelastic damping case, the eigenvalue computation
cost does not significantly increase from the hysteretic
damping case.

References
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3Tran, D., “Méthode de Lanczos par bloc appliquée aux
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